Mathematics

# Solve:$\int {\dfrac{{{x^3} - 4{x^2} + 6x + 5}}{{{x^2} - 2x + 3}}} dx$

##### SOLUTION
$\displaystyle \int \dfrac{x^3-4x^3+6x+5}{x^2-2x+3}dx$

This can aslo be written as

$=\displaystyle \int x-2+\dfrac{11-x}{x^2-2x+3}dx$

$=\dfrac{x^2}{2}-2x+\displaystyle \int \dfrac{10}{x^2-2x+3}+\dfrac{-1}{2}\displaystyle \int \dfrac{2x-2}{x^2-2x+3}dx$

$=\dfrac{x^2}{2}-2x+\dfrac{10}{\sqrt{2}}\tan^{-1}\left(\dfrac{x-1}{\sqrt{2}}\right)-\dfrac{1}{2}\log|x^2-2x+3|+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Integrate
$\int {\cos 5x.\cos 3xdx}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate the following:
$\displaystyle\int { \cfrac { { x }^{ 2 }\tan ^{ -1 }{ { x }^{ 3 } } }{ 1+{ x }^{ 6 } } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Find the integral of    $\displaystyle \int (2x^2+e^x)dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate the following definite integral:
$\displaystyle \int_{-1}^{1}\dfrac {1}{x^2 +2x+5}dx$

$\int \frac{2x^{2}}{3x^{4}2x} dx$