Mathematics

# Solve:$\int \dfrac{dx}{\sin^2x\cos^2x}$

##### SOLUTION
$\int{\cfrac{dx}{\sin^{2}{x} \cos^{2}{x}}}$
Multiply and divide the above expression by $4$, we haave
$= \int{\cfrac{4dx}{4 \sin^{2}{x} \cos^{2}{x}}}$
$= 4 \int{\cfrac{dx}{{\left( 2 \sin{x} \cos{x} \right)}^{2}}}$
$= 4 \int{\cfrac{dx}{\sin^{2}{2x}}} \; \left[ \because \sin{2x} = 2 \sin{x} \cos{x} \right]$
$= 4 \int{\csc^{2}{2x} dx}$
$= 4 \left( \cfrac{-\cot{2x}}{2} \right) + C \; \left[ \because \int{\csc^{2}{ax} \; dx} = \cfrac{-\cot{ax}}{a} \right]$
$= -2 \cot{2x} + C$
$\therefore \int{\cfrac{dx}{\sin^{2}{x} \cos^{2}{x}}} = -2 \cot{2x} + C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 114

#### Realted Questions

Q1 Subjective Hard
Evaluate:  $\int \frac { t ^ { 4 } d t } { \sqrt { 1 - t ^ { 2 } } }$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate the given integral.
$\displaystyle \int { \cfrac { 6x-5 }{ \sqrt { 3{ x }^{ 2 }-5x+1 } } } dx$.

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
The value of $\displaystyle\int _{ 0 }^{ { 1 }/{ \sqrt { 2 } } }{ \dfrac { \sin ^{ -1 }{ x } }{ { \left( 1-{ x }^{ 2 } \right) }^{ { 3 }/{ 2 } } } dx }$ is
• A. $\dfrac { \pi }{ 2 } -\log { 2 }$
• B. $\dfrac { \pi }{ 2 } +\dfrac { 1 }{ 2 } \log { 2 }$
• C. $\pi -\dfrac { 1 }{ 2 } \log { 2 }$
• D. $\dfrac { \pi }{ 4 } -\dfrac { 1 }{ 2 } \log { 2 }$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
If $\displaystyle \frac{3\mathrm{x}^{3}-2\mathrm{x}^{2}-1}{\mathrm{x}^{4}+\mathrm{x}^{2}+1}=\displaystyle \frac{\mathrm{A}\mathrm{x}+\mathrm{B}}{\mathrm{x}^{2}+\mathrm{x}+1}+\frac{\mathrm{C}\mathrm{x}+\mathrm{D}}{\mathrm{x}^{2}+\mathrm{q}\mathrm{x}+1}$
then $\mathrm{q}=$
• A. $1$
• B. $0$
• C. $2$
• D. $-1$

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Medium
The value  of the definite integral, $I = \int _{ 0 }^{ \sqrt { 10 } }{ \dfrac { x }{ { e }^{ { x }^{ 2 } } } } dx$ is equal to