Mathematics

# Solve:$\int \dfrac{\cos x}{1+\cos x}.dx$

##### SOLUTION
$\int { \dfrac { \cos x }{ 1+\cos x } dx } \\ =\int { \dfrac { 2{ \cos }^{ 2 }\dfrac { x }{ 2 } -1 }{ 2{ \cos }^{ 2 }\dfrac { x }{ 2 } } dx } \quad (\because \cos2x=2{ \cos }^{ 2 }x-1)\\ =\int { \left[ 1-\dfrac { 1 }{ 2{ \cos }^{ 2 }\dfrac { x }{ 2 } } \right] dx } \\ =\int { \left[ 1-\dfrac { 1 }{ 2 } { \sec }^{ 2 }\dfrac { x }{ 2 } \right] dx } \\ =x-\dfrac { 1 }{ 2 } .2\tan\dfrac { x }{ 2 } +C\\ =x-\tan\dfrac { x }{ 2 } +C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Solve: $\int\dfrac{1}{(\sin x-2 \cos x)(2\sin x+\cos x)}dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Integrate the following function with respect to $x$
$\dfrac{(\sin^{-1}{x})^{3/2}}{\sqrt{1-x^{2}}}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
$\displaystyle\int{\dfrac{1+\cos{x}}{x+\sin{x}}dx}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\displaystyle\int { { x }^{ x }\log { \left( ex \right) } dx }$ is equal to
• A. $x\cdot \log { x } +c$
• B. ${ \left( \log { x } \right) }^{ x }+c$
• C. ${ x }^{ \log { x } }+c$
• D. ${ x }^{ x }+c$

Find the value $\displaystyle\int\limits_{-\dfrac{\pi}{2}}^{\dfrac{\pi}{2}} \sin^{2017}x\cos ^{2018}x\ dx$.