Mathematics

Solve:$$\int \dfrac{1}{5-4 \cos x}.dx$$


SOLUTION
$$\quad \int { \dfrac { 1 }{ 5-4\cos x } dx\quad  } \\ =\int { \dfrac { dx }{ 5\left( { \cos }^{ 2 }\dfrac { x }{ 2 } +{ \sin }^{ 2 }\dfrac { x }{ 2 }  \right) +4\left( { \cos }^{ 2 }\dfrac { x }{ 2 } -{ \sin }^{ 2 }\dfrac { x }{ 2 }  \right)  }  } \\ =\int { \dfrac { dx }{ 5{ \cos }^{ 2 }\dfrac { x }{ 2 } +5{ \sin }^{ 2 }\dfrac { x }{ 2 } +4{ \cos }^{ 2 }\dfrac { x }{ 2 } -4{ \sin }^{ 2 }\dfrac { x }{ 2 }  }  } \\ =\int { \dfrac { dx }{ 9{ \cos }^{ 2 }\dfrac { x }{ 2 } +{ \sin }^{ 2 }\dfrac { x }{ 2 }  }  } \\ =\int { \dfrac { { \sec }^{ 2 }\dfrac { x }{ 2 }  }{ 9+{ \tan }^{ 2 }\dfrac { x }{ 2 }  } dx\quad  } \\ Now,\quad let\\ \tan\dfrac { x }{ 2 } =t\\ differentiating\quad w.r.t\quad x,\quad we\quad get\\ \quad \quad { \sec }^{ 2 }\dfrac { x }{ 2 } \times \dfrac { 1 }{ 2 } dx=dt\\ \Rightarrow { \sec }^{ 2 }\dfrac { x }{ 2 } dx=2dt\\ now\quad putting\quad these\quad values\quad in\quad the\quad above\quad equation\quad we\quad get,\\ \quad \quad \int { \dfrac { { \sec }^{ 2 }\dfrac { x }{ 2 }  }{ 9+{ \tan }^{ 2 }\dfrac { x }{ 2 }  } dx\quad  } \\ =2\int { \dfrac { dt }{ 9+{ t }^{ 2 } }  } \\ =2\int { \dfrac { dt }{ { \left( 3 \right)  }^{ 2 }+{ \left( t \right)  }^{ 2 } }  } \\ =\dfrac { 2 }{ 3 } { \tan }^{ -1 }\left( \dfrac { t }{ 3 }  \right) \\ =\dfrac { 2 }{ 3 } { \tan }^{ -1 }\left( \dfrac { \tan\dfrac { x }{ 2 }  }{ 3 }  \right) +C$$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Integrate the following w.r.t $$x$$
$$\dfrac{{x}^{2}-3x+1}{\sqrt{1-{x}^{2}}}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\displaystyle\int_0^{\pi /2} {\dfrac{{\sin x}}{{\sqrt {1 + {\mathop{\rm cosx}\nolimits} } }}} dx = $$
  • A. $$\sqrt 2 - 1$$
  • B. $$2\sqrt 2 $$
  • C. $$\dfrac{{\sqrt 2 + 1}}{2}$$
  • D. $$2(\sqrt 2 - 1)$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Evaluate :
$$\int { { sin }^{ 5 }x.dx } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Hard
Solve : 
$$\displaystyle \int_{0}^{\frac{\pi}{4}} \cfrac{\sin x \cos x}{\cos ^{4} x+\sin ^{4} x} d x$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
$$\underset {n\rightarrow \infty}{lim}\dfrac{1^2+2^2+3^2+.....+n^2}{n^3}=.................$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer