Mathematics

Solve:$\displaystyle\int\dfrac{1}{{\left( {{x^2} + 1} \right)\left( {{x^2} + 4} \right)}}dx$

SOLUTION
$I=\displaystyle \int \dfrac {dx}{(x^2+1)(x^2+4)}=\displaystyle \int \left (\dfrac {1}{3}\right)\times 3\ dx$
$=\dfrac {1}{3}\dfrac {[(x^2+4)-(x^2+1)]dx}{(x^2+1)(x^2+4)}$
$\Rightarrow \ \dfrac {1}{3}\displaystyle \int \dfrac {dx}{(xz^-4)}-\dfrac {1}{3} \ \displaystyle \int \dfrac {dx}{x^2+2^2}$
$\Rightarrow \ \dfrac {1}{3} \left [\tan^2x-\dfrac {1}{2}- \tan ^{-1}\dfrac {x}{2}\right]+c$
$I\Rightarrow \ \dfrac {1}{6} [2\tan^2x-\tan^{-1}x/2]+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

Realted Questions

Q1 Single Correct Medium
The integral $\int_{2}^{4}{\frac {log x^{2}}{log x^{2} +log (36-12x+x^{2})}} dx$ is equal to :
• A. 6
• B. 2
• C. 4
• D. 1

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Integrate: $\displaystyle \int \frac { x ^ { 3 } + 4 x ^ { 2 } + 7 x + 5 } { x + 2 } d x$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
lf$I(\displaystyle \mathrm{m}, \mathrm{n})=\int_{0}^{1}\mathrm{t}^{\mathrm{m}}(1+\mathrm{t})^{\mathrm{n}}$ dt, then the expression for $I(\mathrm{m}, \mathrm{n})$ in terms of $I(\mathrm{m}+1, \mathrm{n}- \mathrm{l})$ is

• A. $\displaystyle \frac{\mathrm{n}}{\mathrm{m}+1}I(\mathrm{m}+1,\ \mathrm{n}-1)$
• B. $\displaystyle \frac{2^{\mathrm{n}}}{\mathrm{m}+1}+\frac{\mathrm{n}}{\mathrm{m}+1}I(\mathrm{m}+1,\ \mathrm{n}-1)$
• C. $\displaystyle \frac{\mathrm{m}}{\mathrm{n}+1}I(\mathrm{m}+1,\ \mathrm{n}-1)$
• D. $\displaystyle \frac{2^{\mathrm{n}}}{\mathrm{m}+1}-\frac{\mathrm{n}}{\mathrm{m}+1}I(\mathrm{m}+1, \mathrm{n}-1)$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
$\int_{0}^{\pi/2} \sin\phi \cos \phi \sqrt{(a^2\sin^2\phi +b^2\cos^2\phi )}d\phi \,\,a\neq b \,\, (a>0, b> 0)$

1 Verified Answer | Published on 17th 09, 2020

Q5 Passage Hard
Let us consider the integral of the following forms
$f{(x_1,\sqrt{mx^2+nx+p})}^{\tfrac{1}{2}}$
Case I If $m>0$, then put $\sqrt{mx^2+nx+C}=u\pm x\sqrt{m}$
Case II If $p>0$, then put $\sqrt{mx^2+nx+C}=u\pm \sqrt{p}$
Case III If quadratic equation $mx^2+nx+p=0$ has real roots $\alpha$ and $\beta$, then put $\sqrt{mx^2+nx+p}=(x-\alpha)u\:or\:(x-\beta)u$