Mathematics

# Solve$\displaystyle\int {\dfrac{{{x^5}}}{{{x^2} + 1}}} dx$

$\dfrac{{{x^4}}}{4} - \dfrac{{{x^2}}}{2} + \dfrac{1}{2}\log ({x^2} + 1) + c$

##### SOLUTION

We have,

$I=\displaystyle\int{\dfrac{{{x}^{5}}}{{{x}^{2}}+1}dx}$

$I=\displaystyle\int{\left( {{x}^{3}}-x+\dfrac{x}{{{x}^{2}}+1} \right)dx}$

$I=\displaystyle\int{{{x}^{3}}dx-\displaystyle\int{x}dx+\dfrac{1}{2}\displaystyle\int{\dfrac{2x}{{{x}^{2}}+1}}dx}$

$I=\dfrac{{{x}^{4}}}{4}-\dfrac{{{x}^{2}}}{2}+\dfrac{1}{2}{{\log }_{e}}\left( {{x}^{2}}+1 \right)+C$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Evaluate $\int_{0}^{1} x \tan^{-1} x\ dx$.

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate $\displaystyle\int { \dfrac { \sin { x } }{ \sin { (x+a) } } dx }$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate:

$\displaystyle\int _{1}^{2} \left(\dfrac{x-1}{x^{2}}\right)e^{x}dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
$\displaystyle \int e^{ax}.\sin(bx+c)dx$

Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$