Mathematics

# solve$\displaystyle \int e^{x} \dfrac{2+x}{(3+x)^{2}} dx$.

##### SOLUTION
We have,
$\int {{e^x}\frac{{2 + x}}{{{{\left( {3 + x} \right)}^2}}}dx}$
$\begin{array}{l} =\int { { e^{ x } }\left[ { \frac { { \left( { 3+x } \right) -1 } }{ { { { \left( { 3+x } \right) }^{ 2 } } } } } \right] dx } \\ =\int { { e^{ x } }\left[ { \frac { 1 }{ { 3+x } } -\frac { 1 }{ { { { \left( { 3+x } \right) }^{ 2 } } } } } \right] dx } \\ =\frac { { { e^{ x } } } }{ { 3+x } } +C \end{array}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Solve : $\int \, 4 \, x^3 \sqrt{5 - x^2 } \, dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
The value of $\int \frac{x^3}{x+2} dx$ equals
• A. $\frac{x^3}{3} +x^2+4x - 8 log |x +2| +c$
• B. $\frac{x^3}{3} +x^2-4x - 8 log |x +2| +c$
• C. $\frac{x^3}{3} +x^2+4x +8 log |x +2| +c$
• D. $\frac{x^3}{3} -x^2+4x - 8 log |x +2| +c$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
The value of $\displaystyle \int\limits_0^1 {\dfrac{{x{{\tan }^{ - 1}}x}}{{{{\left( {1 + {x^2}} \right)}^{3/2}}}}} dx$ is
• A. $\dfrac{{4 + \pi }}{{4\sqrt 2 }}$
• B. $\dfrac{\pi }{2}$
• C. $- \dfrac{\pi }{2}$
• D. $\dfrac{{4 - \pi }}{{4\sqrt 2 }}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
The values of $x$ for the given equation ${\sec ^{ - 1}}\left( x \right) - {\sec ^{ - 1}}\left( {\sqrt 2 } \right) = \frac{\pi }{2}$ is
• A. $\dfrac{-1}{\sqrt{2}}$
• B. $\dfrac{\sqrt{3}}{2}$
• C. None of these
• D. $-\sqrt{2}$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
The integral $\displaystyle \int \dfrac {dx}{a\cos x + b\sin x}$ is of the form $\dfrac {1}{r}\ln \left [\tan \left (\dfrac {x + \alpha}{2}\right )\right ]$.
What is $r$ equal to?
• A. $a^{2} + b^{2}$
• B. $a + b$
• C. $\sqrt {a^{2} - b^{2}}$
• D. $\sqrt {a^{2} + b^{2}}$