Mathematics

# Solve$\displaystyle \int \dfrac{dx}{(x^{1/2} + x^{1/3})}$

##### SOLUTION
$I=\displaystyle\int\dfrac{dx}{x^{\dfrac{1}{2}}+x^{\dfrac{1}{3}}}$
Put $x=t^{6}$
$dx=6t^{3}dt$
$=\displaystyle\int\dfrac{6t^{5}dt}{t^{3}+t^{2}}=\int\dfrac{6t^{3}}{t+1}dt$
$=6\displaystyle\int\left(\dfrac{t^{3}+1}{t+1}-\dfrac{1}{t+1}\right)dt=6\int \left((t^{2}-t+1)dt-\dfrac{1}{t+1}\right)dt$
$=6\displaystyle\int\left[(t^{2}-t+1)dt-\dfrac{1}{t+1}dt\right]$
$6\left[\dfrac{t^{3}}{3}-\dfrac{t^{2}}{2}+t-\ln(t+1)\right]+C$
$=2x^{\dfrac{1}{2}}-3x^{\dfrac{1}{3}}-6\log (x^{\dfrac{1}{6}}+1)+C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Medium
$\displaystyle \int\frac{\log(\log x)}{x}dx=$
• A. $\displaystyle x[\log(\log x)+1]+c$
• B. $\displaystyle \log x[\log(\log x)+1]+c$
• C. $\displaystyle x[\log(\log x)-1]+c$
• D. $\displaystyle \log x[\log(\log x)-1]+c$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
The value of $\int_{-1}^{3}[tan^{-1}(\frac{x}{x^{2}+1})+tan^{-1}(\frac{x^{2}}{x})]dx$
• A. $\pi$
• B. $\frac{\pi }{2}$
• C. $\frac{\pi }{4}$
• D. 2$\pi$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
The value of the integral $\displaystyle\int_{\frac{1}{3}}^{1}\dfrac{(x-x^{3})^{\frac{1}{3}}}{x^{4}}dx$ is
• A. $0$
• B. $3$
• C. $4$
• D. $6$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\int_0^{\pi/2} \dfrac{tan^7 x}{cot^7 x + tan^7 x} dx$ is equal to
• A. $\dfrac{\pi}{6}$
• B. $\dfrac{\pi}{2}$
• C. $\dfrac{\pi}{3}$
• D. $\dfrac{\pi}{4}$

$\int \frac{x}{x^2 + a^2} \;dx$