Mathematics

# Solve:$\displaystyle \int _2^3 x^2+2x+5 dx$

##### SOLUTION
Given $\displaystyle \int _2^3 x^2+2x+5 dx$

$=\left.\dfrac{x^3}3 +x^2+5x\right|_2^3$     [$\because\int x^n=\dfrac{x^{n+1}}{n+1}$]

$=9+9+15-\dfrac 83-4-10$

$=19-\dfrac 83$

$=\dfrac {49}3$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 One Word Hard
If $I= 636\displaystyle \int_{0}^{\frac{\pi}4}\left ( \sqrt{\sin x}+\sqrt{\cos x} \right )^{-4}dx$ then $I$ equals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
If $I_{1}= \displaystyle \int_{0}^{\infty }\displaystyle \frac{dx}{1+x^{4}}$ and $I_{2}= \displaystyle \int_{0}^{\infty }\displaystyle \frac{x^{2}}{1+x^{4}}\: dx$, then
• A. $I_{1}=2 I_{2}$
• B. $2I_{1}= I_{2}$
• C. none of these
• D. $I_{1}= I_{2}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate the following:
$\displaystyle \int_{-\pi/4}^{\pi/4} log(sin x + cos x)dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\int_{}^{} {{{\tan }^3}2x\sec 2x{\rm{ dx}}}$ is equal to
• A. $\dfrac{1}{3}{\sec ^3}2x - \frac{1}{2}\sec 2x + c$
• B. $\dfrac{{ - 1}}{6}{\sec ^3}2x - \frac{1}{2}\sec 2x + c$
• C. $\dfrac{1}{3}{\sec ^3}2x + \frac{1}{2}\sec 2x + c$
• D. $\dfrac{1}{6}{\sec ^3}2x - \frac{1}{2}\sec 2x + c$

$\displaystyle \int{\dfrac{(1+{x}^{2})dx}{(1-{x}^{2})\sqrt{1+{x}^{4}}}}$