Mathematics

# Solve:$\displaystyle \int_{1}^{2} \dfrac {x}{(x+1)(x+2)}dx$

##### SOLUTION

$I=\displaystyle \int_{1}^2\dfrac {x}{(x+1)(x+2)}dx$

$=\displaystyle \int_{1}^2 \left (-\dfrac {1}{x+1} +\dfrac {2}{x+2} \right)dx$

$\Rightarrow \ I=\left [-\log (x+1)+2 \log (x+2)\right]_1^2$

$=\left [\log \dfrac {(x+2)^2}{x+1}\right]_1^2$

$=\log \dfrac {16}{3}-\log \dfrac {9}{2}$

$=\log \dfrac {32}{27}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium

Evaluate the following definite integral:

$\displaystyle\int_{0}^{1}\sqrt x \ dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\displaystyle \int cos(\log x)dx=$
• A. $x[cos(\log x)-sin(\log x)]+c$
• B. $\displaystyle \frac{x}{2}[cos(\log x)-sin(\log x)]+c$
• C. $\displaystyle \frac{\log x}{2}[cosx+sinx]+c$
• D. $\dfrac{x}{2}[cos(\log x)+sin(\log x)]+c$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Find $\overset { 1 }{ \underset {0 }{ \int } }(2x+3) dx$ as the limit of a sum.

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
$\displaystyle \int(\frac{\cos^{3}x+\cos^{5}x}{\sin^{2}x+\sin^{4}x})dx=$
• A. $\sin x +\displaystyle \frac{2}{\sin x}-6 \tan^{-1}(\sin x)+c$
• B. $\sin x -\displaystyle \frac{2}{\sin x}+6 \tan^{-1} (\sin x)+c$
• C. $\sin x+\dfrac{2}{\sin x}+6 \tan^{-1}(\sin x)+c$
• D. $\sin x -\displaystyle \frac{2}{\sin x}-6\tan^{-1}(\sin x)+c$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
$\displaystyle \int\frac{dt}{(6t-1)}$ is equal to:
• A. $\ln(6t-1)+C$
• B. $-\dfrac{1}{6}\ln(6t-1)+C$
• C. None of these
• D. $\dfrac{1}{6} \ln(6t-1) +C$