Mathematics

# Solve:$\displaystyle \int_{0}^{1} \ x+x^2 dx$

##### SOLUTION

Given $\displaystyle \int_{0}^{1} \ x+x^2 dx$

$=\left.\dfrac {x^2}2+\dfrac {x^3}3\right|_0^1$

$=\dfrac 12+\dfrac 13$

$=\dfrac 56$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Evaluate the following:
$\displaystyle \int \dfrac{2x}{(2x + 1)}dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Find an anti derivative (or integral) of the given function by the method of inspection.
$\sin 2x-4e^{3x}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate:$\displaystyle\int_{2}^{3}{\dfrac{\sqrt{x}dx}{\sqrt{5-x}+\sqrt{x}}}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
$\displaystyle \int \frac{\sqrt{cot\, x}\, -\, \sqrt{tan\, x}}{\sqrt{2} (cos\, x\, +\, sin\, x)} dx$ equals to
• A. $sec^{-1} (sin\, x\, +\, cos\, x)\, +\, c$
• B. $sec^{-1} (sin\, x\, -\, cos\, x)\, +\, c$
• C. $ln\, |(sin\, x\, -\, cos\, x)\, +\, \sqrt{sin\, 2x} |\, +\, c$
• D. $ln\, |(sin\, x\, +\, cos\, x)\, +\, \sqrt{sin\, 2x} |\, +\, c$

Let $\displaystyle f\left ( x \right )=\frac{\sin 2x \cdot \sin \left ( \dfrac{\pi }{2}\cos x \right )}{2x-\pi }$