Mathematics

Solve:

 $$\displaystyle\int_{0}^{1}\dfrac{1-x^{2}}{(1+x^{2})^{2}}dx$$


SOLUTION

$$I=\displaystyle\int_{0}^{1}\dfrac{x^{\frac{1}{2}}-1}{\left(x+\dfrac{1}{x}\right)^{2}}\ dx$$ 

Let $$x+\dfrac{1}{x}=t$$. 

Then, $$d=\left(x+\dfrac{1}{x}\right)=dt$$ 

$$\Rightarrow \left(1-\dfrac{1}{x^{2}}\right)dx=dt$$

Clearly, 

$$x=0\Rightarrow t=\infty$$ 

$$x=1\Rightarrow t=2$$

$$\therefore\quad  =\displaystyle\int_{\infty}^{2}-\dfrac{1}{t^{2}}dt$$ 

$$=\left[\dfrac{1}{t}\right]_{\infty}^{2}$$   [$$\because\int x^n=\dfrac{x^{n+1}}{n+1}$$]

$$=\dfrac{1}{2}$$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Solve:
$$\displaystyle \int_{0}^{2} \cfrac{6 x+3}{x^{2}+4} d x$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\displaystyle \int_{\sin \theta}^{\cos \theta} f(x \tan \theta) d x\left(\text { where } \theta \neq \dfrac{n \pi}{2}, n \in I\right)$$ is equal to
  • A. $$-\tan \theta \int_{\cos \theta}^{\sin \theta} f(x) d x$$
  • B. $$\sin \theta \int_{1}^{\tan \theta} f(x \cos \theta) d x$$
  • C. $$\frac{1}{\tan \theta} \int_{\sin \theta}^{\sin \theta \tan \theta} f(x) d x$$
  • D. $$-\cos \theta \int_{1}^{\tan \theta} f(x \sin \theta) d x$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
$$\displaystyle \int_{0}^{\pi /2}\sin x\log \left ( \sin x \right )dx= $$
  • A. $$\displaystyle \log _{e}e$$
  • B. $$\displaystyle \log _{e}2$$
  • C. $$\displaystyle \log _{e}\left ( e/2 \right )$$
  • D. $$\displaystyle \log _{e}\left ( 2/e \right )$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
$$\displaystyle\int{\frac{e^{\displaystyle(x^2+4\ln{x})}-x^3e^{\displaystyle x^2}}{x-1}dx}$$ is equal to
  • A. $$\displaystyle\frac{(x-1)xe^{\displaystyle x^2}}{2}+C$$
  • B. $$\displaystyle\frac{(x^2-1)}{2x}-e^{\displaystyle x^2}+C$$
  • C. none of these
  • D. $$\displaystyle\left(\frac{e^{\displaystyle 2\ln{x}}-1}{2}\right)e^{\displaystyle x^2}+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Let g(x) =$$\displaystyle \int_{0}^{x}f\left ( t \right )dt,$$ where f is a function
whose graph is show adjacently.
On the basis of above information, answer te following questions.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer