Mathematics

# Solve the integral:$\int {\frac{{{x^4} + {x^2} + 1}}{{{x^2} - x + 1}}dx}$

##### SOLUTION
$\begin{array}{l}I = \int {\frac{{{x^4} + {x^2} + 1}}{{{x^2} - x + 1}}dx} \\I = \int {\left( {{x^2} + x + 1} \right)dx} \\I = \frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} + x + C\end{array}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 109

#### Realted Questions

Q1 Subjective Medium
Integrate $\displaystyle \int \dfrac {2x}{(x^{2}+1)(x^{4}+4)}dx$.

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
The value of $\displaystyle \int(3x^{2}\tan\frac{1}{x}-x\sec^{2}\frac{1}{x})dx {\it}$ is
• A. $x^{2}\displaystyle \tan\frac{1}{x}+c$
• B. $x\displaystyle \tan\frac{1}{x}+c$
• C. $\displaystyle \tan\frac{1}{x}+c$
• D. $x^{3}\displaystyle \tan\frac{1}{x}+c$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate : $\displaystyle \int\limits_{0}^{\pi/4} \log(1+\tan x)dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
Evaluate: $\displaystyle\int { \cfrac { \sin { x } +\cos { x } }{ \sqrt { 9+16\sin { 2x } } } } dx$

$\int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx}$