Mathematics

# Solve the following differential equation.$\left( \cfrac { x+y-1 }{ x+y-2 } \right) \dfrac { dy }{ dx } =\cfrac { x+y+1 }{ x+y+2 }$

##### SOLUTION

Consider the given differential equation.

$\left( \dfrac{x+y-1}{x+y-2} \right)\dfrac{dy}{dx}=\dfrac{x+y+1}{x+y+2}$

Let,

$u=x+y$

$\dfrac{du}{dx}=1+\dfrac{dy}{dx}$

Therefore,

$\left( \dfrac{x+y-1}{x+y-2} \right)\dfrac{dy}{dx}=\dfrac{x+y+1}{x+y+2}$

$\dfrac{u-1}{u-2}\left( \dfrac{du}{dx}-1 \right)=\dfrac{u+1}{u+2}$

$\left( \dfrac{u-1}{u-2} \right)\dfrac{du}{dx}=\dfrac{u+1}{u+2}+\dfrac{u-1}{u-2}$

$\left( \dfrac{u-1}{u-2} \right)\dfrac{du}{dx}=\dfrac{{{u}^{2}}+u-2u-2+{{u}^{2}}-u+2u-2}{\left( u-2 \right)\left( u+2 \right)}$

$\left( \dfrac{u-1}{u-2} \right)\dfrac{du}{dx}=\dfrac{2\left( {{u}^{2}}-2 \right)}{\left( u-2 \right)\left( u+2 \right)}$

$\dfrac{{{u}^{2}}-4}{{{u}^{2}}-2}du=2dx$

Integrate both the sides.

$\int{\dfrac{{{u}^{2}}-4}{{{u}^{2}}-2}du}=\int{2dx}$

$u+\dfrac{\ln \left( \dfrac{\left| u+\sqrt{2} \right|}{\left| u-\sqrt{2} \right|} \right)}{\sqrt{2}}=2x+c$

$x+y+\dfrac{1}{\sqrt{2}}\ln \left( \dfrac{\left| x+y+\sqrt{2} \right|}{\left| x+y-\sqrt{2} \right|} \right)=2x+c$

$x+y+\dfrac{1}{\sqrt{2}}\ln \left( \dfrac{\left| x+y+\sqrt{2} \right|}{\left| x+y-\sqrt{2} \right|} \right)+C=0$

Hence, this is the required solution of the integral.

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Medium
If $\int_{1}^{2} e^{x^{2}} d x=a,$ then $\int_{e}^{e^{4}} \sqrt{\ln x} d x$ is equal to
• A. $2 e^{4}-2 e-a$
• B. $2 e^{4}-e-2 a$
• C. $e^{4}-e-a$
• D. $2 e^{4}-e-a$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\displaystyle\int \dfrac{1}{4x^2+4x+3}dx=?$
• A. $\dfrac{1}{2\sqrt{2}}\tan^{-1}\left(\dfrac{2x+1}{\sqrt{2}}\right)+C$
• B. $\dfrac{1}{2}\tan^{-1}(2x-1)+C$
• C. $\dfrac{1}{2}\tan^{-1}(2x+1)+C$
• D. $\dfrac{1}{2\sqrt{2}}\tan^{-1}\left(\dfrac{2x-1}{\sqrt{2}}\right)+C$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Simplify:-
$\int {x\ell n\sqrt x dx}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Integrated by using suitable substitution.
$\int {\sqrt {3 - 2s} }$ ds

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
If $A=\displaystyle \int_{0}^{1}{\dfrac{{e}^{t}}{1+t}}dt$ then $\displaystyle \int_{0}^{1}{{e}^{t}ln(1+t)}dt=$
• A. $e\ ln{2}+A$
• B. $Ae\ ln{2}$
• C. $A\ ln{2}$
• D. $e\ ln{2}-A$