Mathematics

Solve : 
$$\displaystyle \int \dfrac{u}{v} dx$$


SOLUTION
Formula for integration by parts:
$$\displaystyle\int uvdx=u\displaystyle v dx-\displaystyle\int u'(\displaystyle vdx)dx$$
$$\displaystyle\int \dfrac{u}{v}dx=\displaystyle\int u\times \left(\dfrac{1}{v}\right)dx$$
Applying integration by parts formula
$$\therefore \displaystyle\int \dfrac{u}{v}dx=u\displaystyle\int \left(\dfrac{1}{v}\right)dx-\displaystyle\int u'\left(\dfrac{1}{v}dx\right)dx$$.
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Integrate the rational function   $$\cfrac {3x-1}{(x-1)(x-2)(x-3)}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
Let $$\displaystyle f\left ( x \right )=\int \frac{x^{2}dx}{\left ( 1+x^{2} \right )\left ( 1+\sqrt{1+x^{2}} \right )}$$ and $$\displaystyle f\left ( 0 \right )=0.$$ Then $$\displaystyle f\left ( 1 \right )$$ is
  • A. $$\displaystyle \log \left ( 1+\sqrt{2} \right )$$
  • B. $$\displaystyle \log \left ( 1+\sqrt{2} \right )+\frac{\pi }{4}$$
  • C. none of these
  • D. $$\displaystyle \log \left ( 1+\sqrt{2} \right )-\frac{\pi }{4}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Prove that
$$\displaystyle \int _ { 0 } ^ { 1 } \cfrac { 2 n + 3 } { 5 n ^ { 2 } + 1 } d x$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
$$\displaystyle \int \frac{\cot^{-1}(e^x)}{e^x} dx$$ is equal to:
  • A. $$\displaystyle \frac{1}{2}\ln (e^{2x}+1)-\displaystyle \frac{\cot^{-1}(e^x)}{(e^x)}+x+c$$
  • B. $$\displaystyle \frac{1}{2}\ln (e^{2x}+1)+\displaystyle \frac{\cot^{-1}(e^x)}{(e^x)}+x+c$$
  • C. $$\displaystyle \frac{1}{2}\ln (e^{2x}+1)+\displaystyle \frac{\cot^{-1}(e^x)}{(e^x)}-x+c$$
  • D. $$\displaystyle \frac{1}{2}\ln (e^{2x}+1)-\displaystyle \frac{\cot^{-1}(e^x)}{(e^x)}-x+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Hard
Let us consider the integral of the following forms
$$f{(x_1,\sqrt{mx^2+nx+p})}^{\tfrac{1}{2}}$$
Case I If $$m>0$$, then put $$\sqrt{mx^2+nx+C}=u\pm x\sqrt{m}$$
Case II If $$p>0$$, then put $$\sqrt{mx^2+nx+C}=u\pm \sqrt{p}$$
Case III If quadratic equation $$mx^2+nx+p=0$$ has real roots $$\alpha$$ and $$\beta$$, then put $$\sqrt{mx^2+nx+p}=(x-\alpha)u\:or\:(x-\beta)u$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer