Mathematics

Solve $$\int{\sec{x}dx}=$$


SOLUTION
$$\int \sec x dx = \int \dfrac{\sec x (\sec x + \tan x)}{\sec x + \tan x} dx$$

$$= \log | \sec x + \tan x| + c$$
(or)
$$= \log |\tan (\dfrac{\pi}{4} + \dfrac{x}{2})| + c $$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
Evaluate : $$\displaystyle\int^1_0\dfrac{dx}{\sqrt{5x+3}}$$
  • A. $$\dfrac{2}{5}(\sqrt{8}+\sqrt{3})$$
  • B. $$\dfrac{2}{5}\sqrt{8}$$
  • C. None of these
  • D. $$\dfrac{2}{5}(\sqrt{8}-\sqrt{3})$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
$$\displaystyle \int \frac{1}{\left ( x+1 \right )\sqrt{x^{2}+x+1}}dx$$
  • A. $$\displaystyle =-\log \left | \frac{1}{x+1}-\frac{1}{2}+\frac{\sqrt{x^{2}+x+1}}{x-1} \right |$$
  • B. $$\displaystyle =-\log \left | \frac{1}{x-1}-\frac{1}{2}+\frac{\sqrt{x^{2}+x-1}}{x-1} \right |+C$$
  • C. $$\displaystyle =-\log \left | \frac{1}{x-1}-\frac{1}{2}+\frac{\sqrt{x^{2}+x+1}}{x+1} \right |+C$$
  • D. $$\displaystyle =-\log \left | \frac{1}{x+1}-\frac{1}{2}+\frac{\sqrt{x^{2}+x+1}}{x+1} \right |+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Passage Medium
Let $$\displaystyle I_{1}=\int_{0}^{1}(1-x^{2})^{1/3} dx$$  &  $$\displaystyle I_{2}=\int_{0}^{1}(1-x^{3})^{1/2} dx$$

On the basis of above information, answer the following questions: 

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
The value of $$\displaystyle \int_{0}^{4} \dfrac{(y^2-4y+5)(sin(y-2)dy}{(2y^2-8y+1)}$$ is 
  • A. $$2$$
  • B. $$-2$$
  • C. None of these
  • D. $$0$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
Evaluate: $$\displaystyle \int_{0}^{\pi /4}\tan^{5}xdx$$
  • A. $$\displaystyle \log 2-\frac{1}{4}$$
  • B. $$0$$
  • C. $$\displaystyle \log 2+\frac{1}{4}$$
  • D. $$\displaystyle \frac{1}{2}\log 2-\frac{1}{4}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer