Mathematics

# Solve $\int^{3}_{2}\dfrac {x}{x^{2}-1}dx$

##### ANSWER

$\dfrac{1}{2}ln(\dfrac{8}{3})$

##### SOLUTION
Let, $x^2-1=t$

$\implies 2x.dx=dt$

Substituting values , we get

$\implies \int \dfrac{dt}{2t}$

$\implies \dfrac{1}{2}lnt$

$\implies \dfrac{1}{2}[ln(x^2-1)]^3_2$

$\implies \dfrac{1}{2}ln(\dfrac{8}{3})$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Hard
lf $\displaystyle \int\frac{dx}{\sqrt[4]{(x-1)^{3}(x+2)^{5}}}=A\sqrt [4]{\frac{x-1}{x+2}}+c$, then $A$ is equal to
• A. $\dfrac{1}{3}$
• B. $\dfrac{2}{3}$
• C. $\dfrac{3}{4}$
• D. $\dfrac{4}{3}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Integrate the function    $\displaystyle \frac {xe^x}{(1+x)^2}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
If $\phi \left( x \right) = {\int {\left\{ {\phi \left( x \right)} \right\}} ^{ - 2}}dx$ and $\phi \left( 1 \right) = 0$ then $\phi \left( x \right) =$
• A. ${\left\{ {2\left( {x - 1} \right)} \right\}^{\frac{1}{4}}}$
• B. ${\left\{ {5\left( {x - 2} \right)} \right\}^{\frac{1}{5}}}$
• C. none of these
• D. ${\left\{ {3\left( {x - 1} \right)} \right\}^{\frac{1}{3}}}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
$\displaystyle \int\dfrac{1}{(2x+1)\sqrt{x^{2}-x-2}}dx=$
• A. $-\displaystyle \dfrac{1}{\sqrt{5}} cos \displaystyle \dfrac{7+4x}{3(2x+1)}+c$
• B. $-\dfrac{1}{\sqrt{5}}sinh^{-1}\dfrac{7+4x}{3(2x+1)}+c$
• C. $-\displaystyle \dfrac{1}{\sqrt{5}}cosh^{-1}\dfrac{7+4x}{3(2x+1)}+c$
• D. $-\dfrac{1}{\sqrt{5}}\sin^{-1}\dfrac{7+4x}{3(2x+1)}+c$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Passage Medium
Let $\displaystyle f\left ( x \right )=\frac{\sin 2x \cdot \sin \left ( \dfrac{\pi }{2}\cos x \right )}{2x-\pi }$

Then answer the following question.

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020