Mathematics

# Solve $\int { \left( 1-x \right) \sqrt { x } } dx$

##### SOLUTION
$\int {\left( {1 - x} \right)\sqrt x } dx$
$= \int {\left( {\sqrt x - x\sqrt x } \right)dx}$

$= \int {\left( {{x^{\dfrac{1}{2}}} - {x^{\dfrac{3}{2}}}} \right)} dx$

$= \dfrac{2}{3}{x^{\dfrac{3}{2}}} - \dfrac{2}{5}{x^{\dfrac{5}{2}}} + c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Hard
Evaluate the given integral.
$\int { { e }^{ x } } \left( \tan { x } -\log { \cos { x } } \right) dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\int\dfrac{1}{\sqrt{x}+\sqrt{x+1}}dx$ is equal to
• A. $\dfrac{2x}{3}[\sqrt{x+1}-\sqrt{x}]+C$
• B. $\ln[\sqrt{x}-\sqrt{x+1}]+C$
• C. $\ln[\sqrt{x+1}-\sqrt{x}]+C$
• D. $\dfrac{2}{3}[(x+1)^{3/2}-x^{3/2}]+C$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Prove that $\displaystyle\int^{\pi}_0\sin^2x\cos^3xdx=0$.

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\displaystyle\int \left(e^{\sin^{-1}x}+\displaystyle \frac{1}{\sqrt{1-x^{2}}}\right) dx$
• A. $e^{x}(1+\tan^{2}x)+c$
• B. $e^{x} \tan2x+c$
• C. $e^{x}(1+\tan x)+c$
• D. $e^{\sin^{-1}x}\left(\dfrac{\sqrt{1-x^2} + x}{2}\right)+\sin^{-1}x+c$

$\int \frac{2x^{2}}{3x^{4}2x} dx$