Mathematics

# Solve $\int {\frac{{3x - 1}}{{{{\left( {x + 2} \right)}^2}}}} dx$

##### SOLUTION
Solution -
$\int \frac{3x-1}{(x+2)^{2}}dx$

$= \int \frac{3x-1+7-7}{(x+2)^{2}}dx$

$= \int \frac{3}{x+2}dx -7 \int \frac{dx}{(x+2)^{2}}$

$= 3ln\left | x+2 \right |+\frac{7}{x+2}+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Evaluate: $\displaystyle\int _{ 0 }^{ 2 }{ x\sqrt { x+2 } dx }$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
If $I=\int \dfrac{dx}{\sin^{4}{x}+\cos^{4}{x}}$, then Find out $I$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
If $\displaystyle I =\int_{0}^{a} \sqrt {\frac{a-x}{a+x}}dx, a > 0,$ then $I$ equals
• A. $\displaystyle \frac{1}{2}\left(a-\frac{\pi}{2}\right)$
• B. $\displaystyle \frac{a}{2}(\pi-1)$
• C. $\displaystyle \frac{1}{\sqrt{2}}a (\pi-1)$
• D. $\displaystyle a\left( \frac{\pi}{2}-1\right)$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium

$\displaystyle \int_{0}^{16}\frac{dx}{\sqrt{x+9}-\sqrt{x}}=$
• A. 10
• B. 14
• C. 16
• D. 12

Consider the integrals $I_1=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{dx}{1+\sqrt{tan x}}$ and $I_2=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{sin x}dx}{\sqrt{sin }x+\sqrt{cos}x}$