Mathematics

solve $$\int \frac{1}{1+e^{-1}}\;dx$$


SOLUTION
$$\displaystyle\int \dfrac{1}{1+e^{-1}}d{x}=\dfrac{x}{1+e^{-1}}+c$$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 111
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Find the integrals of the functions.
i) $$sin^2 (2x + 5)$$
ii) $$sin \, 3x \, cos \, 4x$$
iii) $$cos \, 2x \, cos \, 4x \, cos \, 6x$$
iv) $$sin^3 (2x + 1)$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Simplify: $$\int {\dfrac{{{e^x}\left( {x - 1} \right)}}{{{{\left( {x + 1} \right)}^3}}}dx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\tan^{-1}\left(\displaystyle \frac{3x-x^{3}}{1-3x^{2}}\right)$$ can be integrated by substituting
  • A. $$ x=\cos\theta$$
  • B. $$ x=\sin\theta$$
  • C. $$ x=\sec\theta$$
  • D. $$ x=\tan\theta$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
$$\displaystyle \int \frac{a}{b+ce^{x}}dx.$$
  • A. $$\displaystyle \frac{a}{b}\left [ x+\log \left ( b+ce^{x} \right ) \right ].$$
  • B. $$\displaystyle \frac{a}{b}\left [ x-\log \left ( ce^{x} \right ) \right ].$$
  • C. $$\displaystyle \frac{a}{c}\left [ x+\log \left ( b+ce^{x} \right ) \right ].$$
  • D. $$\displaystyle \frac{a}{b}\left [ x-\log \left ( b+ce^{x} \right ) \right ].$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
For the next two (02) items that follow :
Consider the integrals $$I_1=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{dx}{1+\sqrt{tan x}}$$ and $$I_2=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{sin x}dx}{\sqrt{sin }x+\sqrt{cos}x}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer