Mathematics

# Solve :$\int e^x \left( log x + \dfrac {1}{x^2} \right) dx$

##### SOLUTION
$\begin{array}{l} \int { { e^{ x } } } \left( { \log x+\frac { 1 }{ { { x^{ 2 } } } } } \right) dx \\ \int { { e^{ x } }\left( { \log x+\frac { 1 }{ x } -\frac { 1 }{ x } +\frac { 1 }{ { { x^{ 2 } } } } } \right) } dx \\ \int{{e^{x}(f(x)-f'(x))\ dx}}= e^x{f(x)}\\ ={ e^{ x } }\left( { \log x-\frac { 1 }{ x } } \right) +C \end{array}$
Hence,
Solved.

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
$\int {\frac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}dx.}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Prove that $\displaystyle\int^{\pi/2}_0(\sin x-\cos x)log (\sin x+\cos x)dx=0$.

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
$\int {\cos e{c^2}x} \log \sec x\,dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Integrate $\displaystyle \int_{1}^{2}x^2 \ dx$

$\int {\dfrac {\cos 2x}{\sin x}}dx$