Mathematics

Solve : $$\int \dfrac{x^4dx}{(1+x^2)^3}$$.


SOLUTION
Given the integral,
$$\int { \dfrac { { x }^{ 4 }dx }{ { ({ x }^{ 2 }+1) }^{ 3 } }  } $$
using partial fraction we get,
$$=\int { \left( \dfrac { 1 }{ { x }^{ 2 }+1 } -\dfrac { 2 }{ { ({ x }^{ 2 }+1) }^{ 2 } } +\dfrac { 1 }{ { ({ x }^{ 2 }+1) }^{ 3 } }  \right)  } \\ =\int { \dfrac { 1 }{ { x }^{ 2 }+1 }  } dx-2\int { \dfrac { 1 }{ { ({ x }^{ 2 }+1) }^{ 2 } }  } dx+\int { \dfrac { 1 }{ { ({ x }^{ 2 }+1) }^{ 3 } }  } dx$$
Here,
$$\int { \dfrac { 1 }{ { x }^{ 2 }+1 }  } dx\\ =\tan^{-1} { (x) } $$
For, 
$$\int { \dfrac { 1 }{ { ({ x }^{ 2 }+1) }^{ 2 } }  } dx$$
applying reduction formula we get,
$$=\dfrac { x }{ 2({ x }^{ 2 }+1) } +\dfrac { 1 }{ 2 } \int { \dfrac { 1 }{ { x }^{ 2 }+1 }  } dx\\ =\dfrac { \tan^{-1} { (x) }  }{ 2 } +\dfrac { x }{ 2({ x }^{ 2 }+1) } $$
Again for,
$$\int { \dfrac { 1 }{ { ({ x }^{ 2 }+1) }^{ 3 } }  } dx$$
applying reduction formula we get,
$$=\dfrac { x }{ 4{ ({ x }^{ 2 }+1) }^{ 2 } } +\dfrac { 3 }{ 4 } \int { \dfrac { 1 }{ { ({ x }^{ 2 }+1) }^{ 2 } }  } dx\\ =\dfrac { 3\tan^{-1} { (x) }  }{ 8 } +\dfrac { 3x }{ 8({ x }^{ 2 }+1) } +\dfrac { x }{ 4{ ({ x }^{ 2 }+1) }^{ 2 } } \\ \therefore \int { \dfrac { 1 }{ { x }^{ 2 }+1 }  } dx-2\int { \dfrac { 1 }{ { ({ x }^{ 2 }+1) }^{ 2 } }  } dx+\int { \dfrac { 1 }{ { ({ x }^{ 2 }+1) }^{ 3 } }  } dx\\ =\dfrac { 3\tan^{-1} { (x) }  }{ 8 } -\dfrac { 5x }{ 8({ x }^{ 2 }+1) } +\dfrac { x }{ 4{ ({ x }^{ 2 }+1) }^{ 2 } } $$
Hence,
$$\int { \dfrac { { x }^{ 4 }dx }{ { ({ x }^{ 2 }+1) }^{ 3 } }  } \\ =\dfrac { 3\tan^{-1} { (x) }  }{ 8 } -\dfrac { 5x }{ 8({ x }^{ 2 }+1) } +\dfrac { x }{ 4{ ({ x }^{ 2 }+1) }^{ 2 } } +C\\ =\dfrac { 3\tan^{-1} { (x) }  }{ 8 } +\dfrac { -5{ x }^{ 3 }-3x }{ 8{ ({ x }^{ 2 }+1) }^{ 2 } } +C.$$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
If $$\displaystyle f\left ( x \right )=\int_{-1}^{1}\frac{\sin x}{1+t^{2}}dt$$ then $$\displaystyle {f}'\left ( \frac{\pi }{3} \right )$$ is
  • A. nonexistent
  • B. $$\displaystyle \pi \sqrt{3/4}$$
  • C. none of these
  • D. $$\displaystyle \pi /4$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
$$\displaystyle \int \dfrac{px^{p+2q-1}-qx^{q-1}}{x^{2p+2q}+2x^{p+q}+1}dx$$ is equal to

  • A. $$ -\dfrac{x^{p}}{x^{p+q}+1}+C$$
  • B. $$ \dfrac{x^{q}}{x^{p+q}+1}+C$$
  • C. $$ \dfrac{x^{p}}{x^{p+q}+1}+C$$
  • D. $$-\dfrac{x^{q}}{x^{p+q}+1}+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Integrate $$\displaystyle \int_{1}^{2}(x^2-1)dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Matrix Hard
The value of $$ \displaystyle \int_{a}^{b}f\left ( x \right )dx $$
$$ a= 0,\:b= \pi /3,\:f\left ( x \right )= \displaystyle \frac{x}{1+\sin x} $$ $$ \displaystyle \frac{16}{3}\pi

-2\sqrt{3} $$
$$ a= 1,\:b= 16,\:f\left ( x \right )= \tan^{-1}\sqrt{\sqrt{x}-1} $$ $$ \displaystyle \frac{\pi ^{2}}{16}+\displaystyle \frac{\pi }{4} \log 2 $$
$$ a= 0,\:b= \pi /2,\:f\left ( x \right )= \displaystyle \frac{x\sin 2x}{\left ( \sin x+\cos x \right )^{2}} $$ $$ -\displaystyle \frac{\pi }{3} \left ( 2-\sqrt{3} \right )+\log \left ( \dfrac{1}{2}+\displaystyle \frac{\sqrt{3}}{2} \right )$$
$$ a= 0,\:b= \pi /4,\:f\left ( x \right )= \displaystyle \frac{x^{2}\sec ^{2}x\left ( \cos 2x-\sin 2x \right )}{\left ( \sin x+\cos x \right )^{2}} $$ $$ \displaystyle \frac{\pi ^{2}}{8}-\displaystyle \frac{\pi }{4} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
$$\displaystyle \int _{ 0 }^{ 1 }{ \tan ^{ -1 }{ \left( \dfrac { 2x }{ 1-{ x }^{ 2 } }  \right) dx }  } =\dfrac{\pi}{a}-\ln a$$. Find $$a$$.
  • A. $$1$$
  • B. $$-1$$
  • C. None of these
  • D. $$2$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer