Mathematics

# Solve : $\int (1 - x) \sqrt{x} \, dx$

##### SOLUTION
$\int (1-x)\sqrt{x}dx$

$\int \sqrt{x}-x^{\frac{3}{2}}dx$

$=\dfrac{2}{3}x^{\frac{3}{2}}-\dfrac{2}{5}x^{\frac{5}{2}}+C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Evaluate:
$\displaystyle\int^2_1\dfrac{dx}{x(x^4+1)}$.

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate the following integrals:
$\int { \sqrt { x-{ x }^{ 2 } } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
$\displaystyle \int \frac{\sec^{2}x dx}{\sqrt{\tan^{2} x+4}}=$
• A. $\dfrac{1}{2}\ln\left ( \tan x+\sqrt{\tan^{2} x+4} \right )+C$
• B. $\ln\left ( \dfrac{1}{2}\tan x+\dfrac{1}{2}\sqrt{\tan^{2} x+4} \right )+C$
• C. None of these
• D. $\ln\left ( \tan x+\sqrt{\tan^{2} x+4} \right )+C$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
The value of $\displaystyle \int \dfrac {dx}{x(x^{n} + 1)}$ is
• A. $\log \left (\dfrac {x^{n} + 1}{x^{n}}\right ) + C$
• B. $\dfrac {1}{n}\log \left (\dfrac {x^{n} + 1}{x^{n}} \right ) + C$
• C. $\log \left (\dfrac {x^{n}}{x^{n} + 1}\right ) + C$
• D. $\dfrac {1}{n} \log \left (\dfrac {x^{n}}{x^{n} + 1}\right ) + C$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
If $\displaystyle f\left ( x \right )$ is a function of $x$ such that $\displaystyle \frac{1}{\left ( 1 + x \right ) \left ( 1 + x^{2} \right )} = \frac{A}{1 + x} + \frac{f\left ( x \right )}{1 + x^{2}}$ for all $\displaystyle x \: \epsilon \: R$ then $\displaystyle f\left ( x \right )$ is
• A. $\displaystyle \frac{x + 1}{2}$
• B. $\displaystyle 1 - x$
• C. none of these
• D. $\displaystyle \frac{1 - x}{2}$