Mathematics

Solve $\int _{0}^{\pi} x\sec{x}\tan{x}dx$

$-\pi$

SOLUTION
$\displaystyle\int_{0}^{\pi}x\sec x\tan x\ dx$
$=x\sec \displaystyle\int_{0}^{\pi}-\int_{0}^{\pi}\sec x\ dx$
$=-\pi-[\ln |\sec x+\tan x|]_{0}^{\pi}$
$=-\pi-\ln |-1+0|+\ln |1+0|$
$=-\pi$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

Realted Questions

Q1 Single Correct Medium
$\displaystyle \int\frac{3x^{2}+2}{(x^{2}+1)(2x^{2}+1)}dx=$
• A. $\tan^{-1}x -\displaystyle \frac{1}{\sqrt{2}}\tan^{-1}(\sqrt{2}x)+c$
• B. $3 \tan^{-1}x+\tan^{-1}(\sqrt{2}x)+c$
• C. $3 \tan^{-1}x-\tan^{-1}(\sqrt{2}x)+c$
• D. $\tan^{-1}x +\displaystyle \frac{1}{\sqrt{2}}\tan^{-1}(\sqrt{2}x)+c$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
$\displaystyle I_1= \int_{0}^{\frac{\displaystyle \pi}{2}}ln(sin x) \:dx,I_2=\int_{-\frac{\displaystyle \pi}{4}}^{\frac{\displaystyle \pi}{4 }}\ln(\sin x+\cos x)\:dx$.Then
• A. $I_2=2I_1$
• B. $I_1=4I_2$
• C. $I_2=4I_1$
• D. $I_1=2I_2$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Hard
Evaluate: $\int_{0}^{\pi /2} \dfrac {x\sin x \cos x}{\sin^{4}x + \cos^{4}x} dx.$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
The value of $\displaystyle\int{\left(\frac{1}{\sqrt[3]{x}+\sqrt[4]{x}}+\frac{\log{(1+\sqrt[6]{x})}}{\sqrt[3]{x}+\sqrt{x}}\right)dx}$, is equal to $\dots\dots$ where $t=x^{\tfrac{1}{12}}$ and $\theta=\log{(1+x^{\tfrac{1}{6}})}$
• A. $\displaystyle 6\left\{\sum_{r=1}^8{^8C_r{(-1)}^r\frac{t^r}{r}}+\log{(1+t)}\right\}+12\left\{\left(\frac{\theta}{3}-\frac{1}{9}\right)e^{3\theta}-\frac{3}{2}\left(\theta-\frac{1}{2}\right)e^{2\theta}+3(\theta-1)e^{\theta}-\frac{{\theta}^2}{2}\right\}+C$
• B. $\displaystyle\left\{\sum_{r=1}^8{^8C_r{(-1)}^r\frac{t^r}{r}}+\log{(1+t)}\right\}+6\left\{\left(\frac{\theta}{3}-\frac{1}{9}\right)e^{3\theta}-\frac{3}{2}\left(\theta-\frac{1}{2}\right)e^{2\theta}+3(\theta-1)e^{\theta}-\frac{{\theta}^2}{2}\right\}+C$
• C. none of the above
• D. $\displaystyle 12\left\{\sum_{r=1}^8{^8C_r{(-1)}^r\frac{t^r}{r}}+\log{(1+t)}\right\}+6\left\{\left(\frac{\theta}{3}-\frac{1}{9}\right)e^{3\theta}-\frac{3}{2}\left(\theta-\frac{1}{2}\right)e^{2\theta}+3(\theta-1)e^{\theta}-\frac{{\theta}^2}{2}\right\}+C$

Let $\displaystyle I_{1}=\int_{0}^{1}(1-x^{2})^{1/3} dx$  &  $\displaystyle I_{2}=\int_{0}^{1}(1-x^{3})^{1/2} dx$