Mathematics

Solve :

$$\int _{ 0 }^{ \frac{1}{2} }{ \dfrac { x\sin ^{ -1 }{ x }  }{ \sqrt { 1-{ x }^{ 2 } }  } dx},(x\not=1)$$ 


ANSWER

$$\dfrac { 1 }{ 2 } -\dfrac { \sqrt { 3 } \pi }{ 12 }$$


SOLUTION
View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
$$\text { Evaluate: } \displaystyle \int e^{x}\left(\dfrac{\sin 4 x-4}{1-\cos 4 x}\right) d x$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\displaystyle \int { { e }^{ x }{ \left( \frac { x+2 }{ x+4 }  \right)  }^{ 2 }dx } $$ is equal to
  • A. $$\displaystyle { e }^{ x }{ \left( \frac { x+2 }{ x+4 }  \right)  }+c$$
  • B. $$\displaystyle \frac { { e }^{ x } }{ x+4 } +c$$
  • C. none of these
  • D. $$\displaystyle \frac { x{ e }^{ x } }{ x+4 } +c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
The solution of $$x$$ of the equation $$\displaystyle \int_{\sqrt{2}}^{x}{\dfrac{dt}{t\sqrt{t^{2}-1}}}=\dfrac{\pi}{2}$$ is 
  • A. $$2$$
  • B. $$\pi$$
  • C. $$-\sqrt{2}$$
  • D. $$2\sqrt{2}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium

Evaluate the following definite integral:

$$\displaystyle \int _2^3 x^2+2x+5 dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Hard
Let us consider the integral of the following forms
$$f{(x_1,\sqrt{mx^2+nx+p})}^{\tfrac{1}{2}}$$
Case I If $$m>0$$, then put $$\sqrt{mx^2+nx+C}=u\pm x\sqrt{m}$$
Case II If $$p>0$$, then put $$\sqrt{mx^2+nx+C}=u\pm \sqrt{p}$$
Case III If quadratic equation $$mx^2+nx+p=0$$ has real roots $$\alpha$$ and $$\beta$$, then put $$\sqrt{mx^2+nx+p}=(x-\alpha)u\:or\:(x-\beta)u$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer