Mathematics

# Solve :$I = \int \dfrac {e^x}{ e^{2x} - 3e^x + 1 } dx$

##### SOLUTION
$\begin{array}{l} \int { \dfrac { { { e^{ x } } } }{ { { e^{ 2x } }-3{ e^{ x } }+1 } } } \\ Let\, { e^{ x } }=t\Rightarrow { e^{ x } }\dfrac { { dt } }{ { dx } } \\ \int { \dfrac { { dt } }{ { { t^{ 2 } }-3t+1 } } } =\int { \dfrac { { dt } }{ { { { \left( { t-\dfrac { 3 }{ 2 } } \right) }^{ 2 } }-\dfrac { 5 }{ 4 } } } } \\ =\int { \dfrac { { dt } }{ { { { \left( { t-\dfrac { 3 }{ 2 } } \right) }^{ 2 } }-{ { \left( { \dfrac { { \sqrt { 5 } } }{ 2 } } \right) }^{ 2 } } } } } \\ =\dfrac { 1 }{ { \sqrt { 5 } } } \ln { \left( { \dfrac { { t-\dfrac { 3 }{ 2 } -\dfrac { { \sqrt { 5 } } }{ 2 } } }{ { t-\dfrac { 3 }{ 2 } +\dfrac { { \sqrt { 5 } } }{ 2 } } } } \right) } +C \\ =\dfrac { 1 }{ { \sqrt { 5 } } } \ln { \left( { \dfrac { { 2{ e^{ x } }-3-\sqrt { 5 } } }{ { 2{ e^{ x } }-3+\sqrt { 5 } } } } \right) } +C \end{array}$
Hence,
solved.

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Hard
$\displaystyle \int\frac{dx}{x(x^7+1)}$ is equal to
• A. $log\left(\dfrac{x^7}{x^7+1}\right)+c$
• B. $log\left(\dfrac{x^7+1}{x^7}\right)+c$
• C. $\dfrac{1}{7}log\left(\dfrac{x^7+1}{x^7}\right)+c$
• D. $\dfrac{1}{7}log\left(\dfrac{x^7}{x^7+1}\right)+c$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
$\displaystyle \int \frac{\left ( 1+x \right )^{2}}{x+x^{3}}dx$ is equal to
• A. $\displaystyle \log _{e}x+\log _{e}\left ( 1+x^{2} \right )+k$
• B. $\displaystyle \log _{e}x+\tan ^{-1}x+k$
• C. none of these
• D. $\displaystyle \log _{e}x+2\tan ^{-1}x+k$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle \int e^{x}\left[ \frac { x+4 }{ (x+6)^{ 3 } } \right] dx{}$ is equal to
• A. $e^{x}{\dfrac{1}{(x+4)^{2}}+c}$
• B. $e^{x}\dfrac{x}{x+6}+c$
• C. $e^{x}{\dfrac{4}{(x+6)^{2}}}+c$
• D. $\displaystyle \frac{e^{x}}{(x+6)^{2}}+c$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate
$\displaystyle \int _{ 0 }^{ \pi /2 }{ \dfrac { x+\sin { x } }{ 1+\cos { x } } dx }$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
If $\displaystyle \frac{3x+4}{(x+1)^2(x-1)}=\frac{A}{x-1}+\frac{B}{x+1}+\frac{C}{(x+1)^2}$, then $A$=
• A. $\displaystyle \frac{1}{2}$
• B. $\displaystyle \frac{15}{4}$
• C. $\displaystyle \frac{1}{4}$
• D. $\displaystyle \frac{7}{4}$