Mathematics

# Solve $\displaystyle\int\limits_0^{\dfrac{{\ln 3}}{2}} {\dfrac{{{e^x} + 1}}{{{e^{2x}} + 1}}dx}$

$\dfrac{\pi }{{12}} + \dfrac{1}{2}ln\left( {\dfrac{3}{2}} \right)$

##### SOLUTION
$\begin{array}{l}\displaystyle\int\limits_0^{\dfrac{{\ln 3}}{2}} {\dfrac{{{e^x} + 1}}{{{e^{2x}} + 1}}dx} \\\left[ \begin{array}{l}{e^x} = t\\{e^x}dx = dt\,\,\,\,\,\,\, \Rightarrow dx = \dfrac{{dt}}{t}\\x = 0\,\, \Rightarrow t = 1\\x = \dfrac{1}{2}\ln 3\,\, \Rightarrow t = {e^{\dfrac{1}{2}\ln 3}}\\t = \sqrt 3 \\ \end{array} \right]\\ = \displaystyle\int\limits_1^{\sqrt 3 } {\dfrac{{t + 1}}{{\left( {1 + {t^2}} \right)t}}} dt\\ = \displaystyle\int\limits_1^{\sqrt 3 } {\dfrac{{\left( {1 + \dfrac{1}{t}} \right)t}}{{\left( {1 + \dfrac{1}{{{t^2}}}} \right){t^2}}}\dfrac{{dt}}{t}} \\let\,\,\,\dfrac{1}{t} = u\\ - \dfrac{1}{{{t^2}}}dt = du\\ = - \displaystyle\int\limits_1^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{1 + u}}{{1 + {u^2}}}du} \\ = \displaystyle\int\limits_{\dfrac{1}{{\sqrt 3 }}}^1 {\dfrac{1}{{1 + {u^2}}}du} + \displaystyle\int\limits_{\dfrac{1}{{\sqrt 3 }}}^1 {\dfrac{u}{{1 + {u^2}}}du} \\ = \left( {{{\tan }^{ - 1}}\left( u \right)} \right)_{\dfrac{1}{{\sqrt 3 }}}^1 + \dfrac{1}{2}\left( {\ln \left( {{u^2} + 1} \right)} \right)_{\dfrac{1}{{\sqrt 3 }}}^1\\ = \dfrac{\pi }{{12}} + \dfrac{1}{2}\left( {\ln 2 - \ln \dfrac{4}{3}} \right)\\ = \dfrac{\pi }{{12}} + \dfrac{1}{2}ln\left( {\dfrac{3}{2}} \right)\end{array}$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
$\int \dfrac{dx}{x(x^5+3)}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
Repeated application of integration by parts gives us the reduction formula, if the integrand is dependent on a natural number $n$.

If $\displaystyle \int \frac {\cos^m x}{\sin^n x} dx = \frac {\cos^{m - 1}x}{(m - n) \sin^{n - 1} x} + A \int \frac {\cos^{m - 2} x}{\sin^n x} dx + C$, then $A$ is equal to
• A. $\displaystyle \frac {m}{m + n}$
• B. $\displaystyle \frac {m - 1}{m + n}$
• C. $\displaystyle \frac {m}{m + n - 1}$
• D. $\displaystyle \frac {m - 1}{m - n}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
$\int {\dfrac{{x\,{{\sin }^{ - 1}}x}}{{\sqrt {1 - {x^2}} }}dx}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
The angle between the tangent lines to the graph of the function $f(x) =\int_\limits{2}^x (2t -5)dt$ at the point where the graph cuts the $x$-axis is
• A. $\dfrac{\pi}{6}$
• B. $\dfrac{\pi}{4}$
• C. $\dfrac{\pi}{3}$
• D. $\dfrac{\pi}{2}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Medium
Evaluate the following integral:

$\displaystyle \int { \cfrac { { e }^{ x } }{ { e }^{ 2x }+5{ e }^{ x }+6 } } dx\quad$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020