Mathematics

# Solve: $\displaystyle\int\dfrac {\sin^{-1}x}{\sqrt {1-x^{2}}}$

##### SOLUTION
$Let, I = \displaystyle\int \dfrac{\sin^{-1} x}{\sqrt{1 - x^2}} dx$

Put                  $\sin^{-1} x = t$

$\implies \dfrac{1}{\sqrt{1 - x^2}} dx = dt$

$\therefore I = \int t dt$

$I = \dfrac{t^{2}}{2} + c = \dfrac{(\sin^{-1} x)^{2} }{2}+ c$ (Ans)

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Medium
Evaluate the following
$\lim_{n \rightarrow \infty} \displaystyle \frac{1^{9}+2^{9}+3^{9}+\ldots.+n^{9}}{n^{10}}$
• A. $\dfrac{1}{2}$
• B. $\dfrac{1}{5}$
• C. $\dfrac{1}{15}$
• D. $\dfrac{1}{10}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
Integral $\int \frac { \sin ^ { 2 } x \cos ^ { 2 } x } { \left( \sin ^ { 5 } x + \cos ^ { 3 } x \sin ^ { 2 } x + \sin ^ { 3 } x \cos ^ { 2 } x + \cos ^ { 5 } x ) ^ { 2 }\right. } d x$ is equal to :
• A. $\frac { 1 } { 3 \left( 1 + \tan ^ { 3 } x \right) } + C$
• B. $\frac { 1 } { 1 + \cot ^ { 3 } x } + C$
• C. $\frac { - 1 } { 1 + \cot ^ { 3 } x } + C$
• D. $\frac { - 1 } { 3 \left( 1 + \tan ^ { 3 } x \right) } + C$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Hard
Evaluate:
$\int { \cfrac { cosec ^{ 2 }{ x } }{ (1-\cot ^{ 2 }{ x } ) } dx }$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate: $\int { \cfrac { 5x-2 }{ 1+2x+3x } } dx\quad$

solve $\int \frac{1}{1+e^{-1}}\;dx$