Mathematics

# Solve $\displaystyle\int\dfrac {\cos \sqrt {x}}{\sqrt {x}}dx$

##### SOLUTION
$\displaystyle\int\dfrac {\cos \sqrt {x}}{\sqrt {x}}dx$
Put, $\sqrt{x} = t$

$\implies \dfrac{1}{2\sqrt{x}} dx = dt$

$\implies \dfrac{1}{\sqrt{x}} dx = 2dt$

Now, $\displaystyle\int \dfrac{\cos \sqrt{x}}{\sqrt{x}} dx = \int 2 \cos {t} dt$

$= 2\sin t + c$

$= 2\sin {\sqrt{x}} + c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Medium
The value of $\displaystyle\int _{ 0 }^{ \pi }{ \dfrac { dx }{ 5+3\cos { x } } }$ is
• A. $\dfrac{ \pi }{ 8 }$
• B. $\dfrac{ \pi }{ 2 }$
• C. Zero
• D. $\dfrac{ \pi }{ 4 }$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Integrate the function : $\displaystyle \frac {1}{x\sqrt {ax-x^2}}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate
$\displaystyle \int {x.\,\,\,{{\sin }^2}x\,\,dx}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\displaystyle\int _{ 0 }^{ 1 }{ \dfrac { 2\sin ^{ -1 }{ \dfrac { x }{ 2 } } }{ x } } dx$ is equal to
• A. $\displaystyle\int _{ 0 }^{ \pi /6 }{ \cfrac { x }{ \tan { x } } } dx$
• B. $\displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { 2x }{ \tan { x } } } dx$
• C. None of these
• D. $\displaystyle\int _{ 0 }^{ \pi /6 }{ \cfrac { 2x }{ \tan { x } } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
If $\dfrac{d}{dx}f(x)=g(x)$ then $\displaystyle \int_{a}^{b}f(x)g(x)dx=$
• A. $\dfrac{f(b)-f(a)}{2}$
• B. $\dfrac{f(a)-f(b)}{2}$
• C. $\dfrac{{f}^{2}(a)-{f}^{2}(b)}{2}$
• D. $\dfrac{{f}^{2}(b)-{f}^{2}(a)}{2}$