Mathematics

# Solve $\displaystyle\int { \frac { 1 }{ \sqrt { 3x+4 } -\sqrt { 3x+1 } } dx }$

##### SOLUTION
$=\displaystyle \int \dfrac{1}{\sqrt{3x+4}-\sqrt{3x+1}}dx$    Rationlize

$=\displaystyle \int \dfrac{\sqrt{3x+4}\sqrt{3x+1}}{3x+4-3x-1}dx$

$=\displaystyle \dfrac{1}{3}\int (\sqrt{3x+4}+\sqrt{3x+1})dx$

$=\displaystyle \dfrac{1}{3}\left [ \dfrac{(3x+4)^{3/2}}{\dfrac{3}{2}\times 3} +\dfrac{(3x+1)^{3/2}}{3\times 3/2}\right ]+C$

$=\displaystyle \dfrac{1}{3}\left [ \dfrac{2}{9}(3x+4)^{3/2} +\dfrac{2}{9}(3x+1)^{3/2}\right ]+C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Solve $\int _{ 0 }^{ 1 }{ \log\left( \dfrac { 2-x }{ 2+x} \right) } dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate the following definite integral:

$\displaystyle\int_{4}^{12}x\ dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
The value of $\displaystyle \int\limits_0^1 {\dfrac{{x{{\tan }^{ - 1}}x}}{{{{\left( {1 + {x^2}} \right)}^{3/2}}}}} dx$ is
• A. $\dfrac{{4 + \pi }}{{4\sqrt 2 }}$
• B. $\dfrac{\pi }{2}$
• C. $- \dfrac{\pi }{2}$
• D. $\dfrac{{4 - \pi }}{{4\sqrt 2 }}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
If $\int { f\left( x \right) dx=\Psi \left( x \right) }$, then $\int { { x }^{ 5 }f\left( { x }^{ 3 } \right) } dx$ is equal to:
• A. $\dfrac { 1 }{ 3 } { x }^{ 3 }\Psi \left( { x }^{ 3 } \right) -3\int { { x }^{ 3 } } \Psi \left( { x }^{ 3 } \right) dx+C$
• B. $\dfrac { 1 }{ 4 } { x }^{ 3 }\Psi \left( { x }^{ 3 } \right) -\int { { x }^{ 2 } } \Psi \left( { x }^{ 3 } \right) dx+C$
• C. $\dfrac { 1 }{ 3 } \left[ { x }^{ 3 }\Psi \left( { x }^{ 3 } \right) -\int { { x }^{ 3 } } \Psi \left( { x }^{ 3 } \right) dx \right] +C$
• D. $\dfrac { 1 }{ 3 } { x }^{ 3 }\Psi \left( { x }^{ 3 } \right) -\int { { x }^{ 2 } } \Psi \left( { x }^{ 3 } \right) dx +C$

Let $\displaystyle f\left ( x \right )=\frac{\sin 2x \cdot \sin \left ( \dfrac{\pi }{2}\cos x \right )}{2x-\pi }$