Mathematics

# Solve $\displaystyle\int { \dfrac { { e }^{ 6\log { x } }-{ e }^{ 5\log { x } } }{ { e }^{ 4\log { x } }-{ e }^{ 3\log { x } } } } dx$

##### SOLUTION
According to question,

$\int \dfrac{e^{6\ logx}-e^{5\ logx}}{e^{4\ logx}-e^{3\ logx}}dx$

$\implies \int \dfrac{x^6-x^5}{x^4-x^3}dx$

$\implies \int \dfrac{x^5(x-1)}{x^3(x-1)}dx$

$\implies \int x^2dx$

$\implies \dfrac{x^3}{3}+C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Hard
$\text { Find: } \displaystyle \int \sqrt{\dfrac{1-\sqrt{\mathrm{x}}}{1+\sqrt{\mathrm{x}}}} \mathrm{dx}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Assertion & Reason Hard
##### ASSERTION

Statement- 1 :$\lim_{n\rightarrow \infty }\dfrac{1^{m}+2^{m}+3^{m}+....n^{m}}{n^{m+1}}=\dfrac{1}{m+1}(m\neq -1)$

##### REASON

Statement- 2 : The above limit equals $\int_{0}^{1}x^{m}dx$

• A. Statement-1 is True, Statement-2 is True ; Statement-2 is NOT a correct explanation for Statement-1
• B. Statement -1 is True, Statement -2 is False
• C. Statement -1 is False, Statement -2 is True
• D. Statement -1 is True, Statement -2 is True ; Statement -2 is a correct explanation for Statement -1

1 Verified Answer | Published on 17th 09, 2020

Q3 One Word Medium
Gives f(x) with constant of integration zero then find f(1)
$\displaystyle\int \frac{\log x}{\left ( 1+\log x \right )^{2}}dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
If $\dfrac{3x^{2}+10x+13}{(x-1)^{4}}=\dfrac{A}{(x-1)^{2}}+\dfrac{B}{(x-1)^{3}}+\dfrac{C}{(x-1)^{4}}$ then descending order of $A,B,C$
• A. $A, B, C$
• B. $A, C, B$
• C. $C, A, B$
• D. $C, B, A$

Let $T=\int_0^{\ln2}\dfrac{2e^{3x}+ 3e^{2x}-6e^x}{6(e^{3x}+e^{2x}-e^x+1)}dx,$ then $e^T=\frac{p}{q}$ where p and q are coprime to each other, then the value of $p+ q$ is