Mathematics

# Solve : $\displaystyle I = \int e^x$ $sin$ $x$ $dx$

##### SOLUTION

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Evaluate $\displaystyle \int{\cos^{2}x\, dx}$.

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
Evaluate: $\displaystyle\int { \dfrac { { x }^{ 2 }+1 }{ { x }^{ 4 }+1 } dx }$ equals
• A. $\dfrac{1}{\sqrt{2}}\tan^{-1}\left(\dfrac{1-x^{2}}{\sqrt{2}x}\right)+C$
• B. $\dfrac{1}{2}\tan^{-1}\left(\dfrac{x^{2}-1}{\sqrt{2}x}\right)+C$
• C. $\dfrac{1}{2}\tan^{-1}\left(\dfrac{1-x^{2}}{\sqrt{2}x}\right)+C$
• D. $\dfrac{1}{\sqrt{2}}\tan^{-1}\left(\dfrac{x^{2}-1}{\sqrt{2}x}\right)+C$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
The value of $\int_{1}^{-1}\dfrac{dx}{(2-x)\sqrt{1-x^{2}}}$ is
• A. $\dfrac{\pi}{\sqrt{3}}$
• B. $\dfrac{2\pi}{\sqrt{3}}$
• C. cannot be evaluated
• D. $0$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Solve :
$\int \cos (log x)dx$ ?

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
$\displaystyle \int {\frac{{\left( {{e^{2x}} - 1} \right)}}{{{e^{2x}} + 1}}} dx$
• A. $\log (e^x-e^{-x})+C$
• B. $\log (e^{2x}+e^{-2x})+C$
• C. $\log (e^{2x}-e^{-2x})+C$
• D. $\log (e^x+e^{-x})+C$