Mathematics

# Solve : $\displaystyle \underset{0}{\overset{\infty}{\int}} \dfrac{x \, \ln \, x}{(1 + x^2)^2}$

##### SOLUTION
$\int \dfrac{x\ln x}{(1+x^2)^2}dx$

Integration by parts

$=-\dfrac{\ln x}{2(1+x^2)}-\int -\dfrac{1}{2x(1+x^2)}dx$

$=-\dfrac{\ln x}{2(1+x^2)}-\left ( -\dfrac{1}{2}\left ( \left ( \ln |x| \right )-\dfrac{1}{2}\left ( \ln |x^2+1| \right ) \right ) \right )$

$\therefore \int \dfrac{x\ln x}{(1+x^2)^2}dx=-\dfrac{\ln x}{2(1+x^2)}+\dfrac{1}{2}\left ( \left ( \ln |x| \right )-\dfrac{1}{2}\left ( \ln |x^2+1| \right ) \right)+C$

$\therefore \int_{0}^{\infty }\dfrac{x\ln x}{(1+x^2)^2}dx=0-0=0$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Hard
Solve
$\int {\dfrac {x-2}{x ^2 - 4x + 3}} dx =$
• A. $log \sqrt {x ^2 - 4x + 3 + c}$
• B. $xlog (x - 3) - 2 log (x - 2) + c$
• C. $log [(x - 3)(x - 1)]$
• D. $None \ of \ these$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\displaystyle \int_ {0}^{\pi/2}\frac{a\cos x+b\sin x}{\cos x+\sin x}dx=$
• A. $\pi(\mathrm{a}+\mathrm{b})$
• B. $\displaystyle \frac{\pi}{2} (a+b)$
• C. $\pi$ ab
• D. $\displaystyle \frac{\pi}{4} (a+b)$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
$\displaystyle \int\dfrac{1}{a^{2} \cos^{2} x+b^{2} \sin^{2} x}dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
$\displaystyle \int \dfrac {\sin 2x}{1+\cos^{4}x}dx$ is equal to
• A. $\sin^{-1}(\cos^{2}x)+c$
• B. $\cot^{-1}(\cos^{2}x)+c$
• C. $None\ of\ these$
• D. $\cos^{-1}(\cos^{2}x)+c$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Passage Medium
Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives

1 Verified Answer | Published on 17th 08, 2020