Mathematics

# Solve: $\displaystyle \overset{2}{\underset{0}{\int}} (3x^2 - 1)dx$.

##### SOLUTION
$\displaystyle\int^2_0(3x^2-1)dx$
$=\displaystyle\int^2_03x^2dx-\displaystyle\int^2_0dx$
$=\dfrac{3x^3}{3}\displaystyle\int^2_0-x\displaystyle\int^2_0$
$=(8-0)-(2-0)$
$=8-2$
$=6$
$\therefore \displaystyle\int^2_0(3x^2-1)dx=6$.

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Find the integral of    $\displaystyle \int (ax^2+bx+c)dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Solve $\displaystyle \overset{4}{\underset{2}{\int}} 2^x dx$.

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Integrate the function    $\displaystyle \frac {1}{\sqrt {9-25x^2}}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
$\int x\log (1-x^{2})dx =$

$\int \dfrac {\sin \theta + 2\cos \theta}{3\sin \theta + 4\cos \theta} d\theta$.