Mathematics

# Solve $\displaystyle \int \sec^{2}(7-4x) dx$

##### SOLUTION
$\int \sec^{2} (7 - 4x)dx$

$= \tan (7 - 4x) \dfrac{d}{dx} (7 - 4x) + c$

$= \tan (7 - 4x) (- 4) + c$

$= -4 \tan (7 - 4x) + c$  (Ans)

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Hard
$\displaystyle \int_{0}^{\pi }\frac{x dx}{1+\cos ^{2}x}.$
• A. $\dfrac{\pi}{2\sqrt{\left ( 2 \right )}}.$
• B. $\pi { \sqrt{\left ( 2 \right )}}.$
• C. $\dfrac{\pi ^{2}}{\sqrt{\left ( 2 \right )}}.$
• D. $\dfrac{\pi ^{2}}{2\sqrt{\left ( 2 \right )}}.$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
If $I_{n} = \int_{0}^{\pi/4}\tan^{n} xdx$ then $\displaystyle \lim_{n\rightarrow \infty} n(I_{n} + I_{n - 2}) =$
• A. $1/2$
• B. $\infty$
• C. $0$
• D. $1$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Hard
Evaluate : $\int^1_0$$\frac{log (1 +x)}{1 + x^2}dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Integrate cosecx dx

Let $n \space\epsilon \space N$ & the A.M., G.M., H.M. & the root mean square of $n$ numbers $2n+1, 2n+2, ...,$ up to $n^{th}$ number are $A_{n}$, $G_{n}$, $H_{n}$ and $R_{n}$ respectively.