Mathematics

# Solve : $\displaystyle \int \dfrac{x \, dx }{(x^2 + a^2) (x^2 + b^2)}$

##### SOLUTION
$\int \dfrac{x}{(x^2+a^2)(x^2+b^2)}dx$

substitute $u=\dfrac{x^2}{2}\rightarrow dx=\dfrac{1}{x}du$

$=\int \dfrac{1}{(2u+a^2)(2u+b^2)}du$

Upon partial fraction decomposition

$=\int \left ( \dfrac{1}{(b^2-a^2)(2u+a^2)}-\dfrac{1}{(b^2-a^2)(2u+b^2)} \right )du$

upon linearity

$=\dfrac{1}{(b^2-a^2)}\int \dfrac{1}{2u+a^2}du-\dfrac{1}{(b^2-a^2)}\int \dfrac{1}{2u+b^2}du$

$=\dfrac{1}{(b^2-a^2)}\dfrac{\ln (2u+a^2)}{2}-\dfrac{1}{(b^2-a^2)}\dfrac{\ln (2u+b^2)}{2}$

$=-\dfrac{\ln(x^2+b^2)-\ln (x^2+a^2) }{2(b^2-a^2)}+C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Evaluate, $y=\int e^{3a.logx}+e^{3x.loga}dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate $\displaystyle\int^{\pi/2}_0x^2\cos^2xdx$.

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
$\displaystyle\int_{0}^{\pi/4}\sin^{3}2t\cos 2t\ dt$.

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\displaystyle \int e^{x}(3x^{2}+x+1)+c$
• A. $e^{x}(3x^{2}+5x+1)+c$
• B. $e^{x}(3x^{2}+7x+1)+c$
• C. $e^{x}(3x^{2}+x)+c$
• D. $e^{x}(3x^{2}-5x+6)+c$

$\int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx}$