Mathematics

# Solve: $\displaystyle \int \dfrac{\cos x}{x}dx$

##### SOLUTION
$\int \frac{cosx}{x}dx$ can't be done in elementary
functions.
But we can use Taylor series
$\Rightarrow cosx = 1-\frac{k^{2}}{2!}+\frac{k^{4}}{4!}-\frac{k^{6}}{6!}+---$
$\Rightarrow \frac{cosx}{x} = \frac{1}{x}-\frac{k}{2!}+\frac{k^{3}}{4!}-\frac{k^{5}}{6!}+---$
$\Rightarrow \int \frac{cosx}{k}dx = lnx-\frac{x^{2}}{2.2!}+\frac{k^{4}}{4.4!}-\frac{k^{6}}{6.6!}+----+C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Hard
$I=\displaystyle \int x^{3}\log{x}\ dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate the integral $\displaystyle\int_{0}^{1}(1-x^{2})dx$.

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
The value of the integral $\int _{ 0 }^{ - }{ \dfrac { xlogx }{ \left( { 1+x }^{ 2 } \right) ^{ 2 } } dx }$ is _________.
• A. log 7
• B. 5 log 13
• C. none of these
• D.

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
The integral $\displaystyle \int _{ \dfrac { \pi }{ 4 } }^{ \dfrac { 3\pi }{ 4 } }{ \dfrac { dx }{ 1+\cos { x } } }$
• A. $4$
• B. $-1$
• C. $-2$
• D. $2$

$\int \frac{2x^{2}}{3x^{4}2x} dx$