Mathematics

# Solve :$\displaystyle \int_1^2(4x^3-5x^2+6x+9)dx$

##### SOLUTION
$\int _{ 1 }^{ 2 }{ (4{ x }^{ 3 } } -5{ x }^{ 2 }+6x+9)dx\\ =\int _{ 1 }^{ 2 }{ { x }^{ 4 } } -\frac { 5{ x }^{ 3 } }{ 3 } +3{ x }^{ 2 }+9x\\ =(15-\frac { 40 }{ 3 } +12+18)-(1-\frac { 5 }{ 3 } +3+9)\\ =\frac { 61 }{ 3 }$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 111

#### Realted Questions

Q1 Subjective Medium
Find the antiderivative $F$ of $f$ defined by $f(x)=4x^3 -6$, where $f(0)=3$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\displaystyle \int_{-\pi }^{\pi}\left ( \cos ax-\sin bx \right )^{2}dx$ where a and b are integer is equal to
• A. $\displaystyle -\pi$
• B. $0$
• C. $\displaystyle \pi$
• D. $\displaystyle 2\pi$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
Primitive of $\displaystyle \sqrt[3]{\frac{x}{(x^{4} - 1)^{4}}}$  w.r.t  is
• A. $\displaystyle \frac{-3}{4}(1 + x^{-4})^{\tfrac{1}{3}} + C$
• B. $\displaystyle \frac{-3}{4}(1 + x^{-4})^{\tfrac{-1}{3}} + C$
• C. $\displaystyle \frac{3}{4}(1 - x^{-4})^{\tfrac{1}{3}} + C$
• D. $\displaystyle \frac{-3}{4}(1 - x^{-4})^{\tfrac{-1}{3}} + C$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
Solve: $\int_{0}^{\pi/4}\log (1 + \tan x) dx$.
• A. $\dfrac{\pi}{7}\log2$
• B. $-\dfrac{\pi}{8}\log2$
• C. None of these
• D. $\dfrac{\pi}{8}\log2$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium

Find $\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{\sec^{2}xdx}{(\sec x+\tan x)^{n}}$, where $(\mathrm{n}>2)$
• A. $\displaystyle \frac{1}{n^{2}-1}$
• B. $\displaystyle \frac{n}{n^{2}+1}$
• C. $\displaystyle \frac{2}{n^{2}-1}$
• D. $\displaystyle \frac{n}{n^{2}-1}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020