Mathematics

# Simplify : $\displaystyle\int{\dfrac{2dx}{\sqrt{x}}}$

##### SOLUTION
$I=\displaystyle\int{\dfrac{2dx}{\sqrt{x}}}$

$=2\displaystyle\int{{x}^{\frac{-1}{2}}dx}$

$=2\left[\dfrac{{x}^{\frac{-1}{2}+1}}{\dfrac{-1}{2}+1}\right]$

$=2\times 2\sqrt{x}+c$

$=4\sqrt{x}+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Hard
$\displaystyle \int_{0}^{\pi/2} \dfrac {\sin 2x}{1 + 2\cos^{2}x} dx$ is equal to
• A. $\dfrac {1}{2}\log 2$
• B. $\log 2$
• C. $\log 3$
• D. $\dfrac {1}{3}\log 3$
• E. $\dfrac {1}{2}\log 3$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate: $\displaystyle\int {{x \over {\sqrt {x + 4} }}dx}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
If $\displaystyle \int _{0}^{1}\cot^{-1}(1+x^{2}-x)dx=k\left(\dfrac {\pi}{4}-\log_{e}\sqrt {2}\right)$, then the value of $k$ is equal to
• A. $0$
• B. $-1$
• C. $2$
• D. $1$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
The integral $\displaystyle \int _{ \dfrac { \pi }{ 4 } }^{ \dfrac { 3\pi }{ 4 } }{ \dfrac { dx }{ 1+\cos { x } } }$
• A. $4$
• B. $-1$
• C. $-2$
• D. $2$

Solve $\displaystyle\int { \dfrac { 1 }{ 3{ x }^{ 2 }+13x+10 } dx }$