Mathematics

# Resolve $\displaystyle \frac{x}{(1+x)(1+x^2)^2}$ into partial fractions.

$\displaystyle \frac{-1}{4(1+x)}+\frac{(x-1)}{4(1+x^2)}+\frac{(x+1)}{2(1+x^2)^2}$

##### SOLUTION
Let             $\displaystyle \frac{x}{(1+x)(1+x^2)^2}=\frac{A}{1+x}+\frac{Bx+C}{(1+x^2)}+\frac{(Dx+E)}{(1+x^2)^2}$                      ...(i)
$\Longrightarrow x=A(1+x^2)^2+(Bx+C)(1+x)(1+x^2)+(Dx+E)(1+x)$                ...(ii)
Putting $1+x=0$ or $x=-1$ in (ii), we obtain
$-1=A[1+(-1)^2]^2+0+0$
$\therefore A=-\dfrac{1}{4}$
Putting $1+x^2=0$ or $x^2= -1$ in (ii), we obtain
$x=0+0+Dx+D(-1)+E+Ex$
$\Longrightarrow x=(D+E)x+(E-D)$
Equating the coefficient of $x$ and constant term, we get
$D+E=1$
and    $E-D=0$
$\therefore D=E=\dfrac{1}{2}$
Comparing the constant terms in (ii), we obtain
$0=A+C+E$   (For comparing constant terms putting $x=0$)
or                 $0=-\dfrac{1}{4}+C+\dfrac{1}{2}$
$\Longrightarrow 0=C+\dfrac{1}{4}$
$\therefore C=-\dfrac{1}{4}$
and comparing the coefficient of $x^4$ in (ii), we obtain
$0=A+B$
$\therefore B= -A$
$B=\dfrac{1}{4}$
Substituting the value of A, B, C, D, and E in (1), then
$\displaystyle \frac{x}{(1+x)(1+x^2)^2}= \frac{-1}{4(1+x)}+\frac{(x-1)}{4(1+x^2)}+\frac{(x+1)}{2(1+x^2)^2}$
which are the required partial fractions.
Hence, option 'A' is correct.

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Evaluate the given definite integrals as limit of sums:
$\displaystyle \int_2^3x^2dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
If $g\left( x \right) =\int { { x }^{ x }\log _{ e }{ (ex)dx } }$ then  $g\left( \pi \right)$ equals
• A. $\pi \log _{ e }{ \pi }$
• B. ${ \pi }^{ \pi }\log _{ e }{ (e\pi } )$
• C. ${ \pi }^{ \pi }\log _{ e }{ (\pi } )$
• D. ${\pi}^\pi$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
$\displaystyle\int _{ 0 }^{ \infty }{ \dfrac { \log{ x } }{ 1+x^{ 2 } } } dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
$The\quad value\quad of\int _{ -1 }^{ 1 }{ \left( \cfrac { { x }^{ 2 }+sinx }{ 1+{ x }^{ 2 } } \right) dx,\quad is\quad equal\quad to }$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Passage Hard
Given that for each $\displaystyle a \in (0, 1), \lim_{h \rightarrow 0^+} \int_h^{1-h} t^{-a} (1 -t)^{a-1}dt$ exists. Let this limit be $g(a)$
In addition, it is given that the function $g(a)$ is differentiable on $(0, 1)$
Then answer the following question.

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020