Mathematics

Prove that:$\displaystyle \int \dfrac {dx}{x^5}$

SOLUTION
$\displaystyle \int \dfrac{dx}{x^5}\\\displaystyle \int x^{-5} dx\\\dfrac{x^{-4}}{-4}=\dfrac1 {-4x^4}+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

Realted Questions

Q1 Subjective Hard
$\int { \sin { 4x } .{ e }^{ \tan ^{ 2 }{ x } } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
$\displaystyle \int \displaystyle \frac{dx}{x(\log \, x\, -\, 2)(\log\, x\, -\, 3)}\,=$
• A. $\displaystyle \frac{1}{x}\log \left |\displaystyle \frac{\log x\, -\, 3}{\log x\, -\, 2} \right |$
• B. $\log \left |\displaystyle \frac{\log x\, -\, 2}{\log x\, -\, 3} \right |$
• C. $\log \, |\, (\log \, x\, -\, 3)\, (\log \, x\, -\, 2) |$
• D. $\log \left |\displaystyle \frac{\log x\, -\, 3}{\log x\, -\, 2} \right |$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
Let g be continuous function on R such that $\int g(x)\mathrm{d} x=f(x)+C$, where C is constant of integration. If f(x) is an odd function, $f(1)=3$ and $\int_{-1}^{1}f^{2}(x)g(x)\mathrm{d} x=\lambda$, then $\frac{\lambda }{2}$ is equal to
• A. 10
• B. 11
• C. 12
• D. 9

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
If $I=\displaystyle \int _{ 0 }^{ 1 }{ \frac { dx }{ \left( 1+x \right) \left( 2+x \right) \sqrt { x\left( 1-x \right) } } }$ then $I=$
• A. $2\pi$
• B. $\pi$
• C. $\dfrac {\pi}{\sqrt {6}}|\sqrt {3}-1|$
• D. $\dfrac {\pi}{2}$

$\int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx}$