Mathematics

Prove that:
$$\displaystyle \int \dfrac {dx}{x^5}$$


SOLUTION
$$\displaystyle \int \dfrac{dx}{x^5}\\\displaystyle \int x^{-5} dx\\\dfrac{x^{-4}}{-4}=\dfrac1 {-4x^4}+c$$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Subjective Hard
$$\int { \sin { 4x } .{ e }^{ \tan ^{ 2 }{ x }  } } dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
$$\displaystyle \int \displaystyle \frac{dx}{x(\log \, x\, -\, 2)(\log\, x\, -\, 3)}\,=$$
  • A. $$\displaystyle \frac{1}{x}\log \left |\displaystyle \frac{\log x\, -\, 3}{\log x\, -\, 2} \right |$$
  • B. $$\log \left |\displaystyle \frac{\log x\, -\, 2}{\log x\, -\, 3} \right |$$
  • C. $$\log \, |\, (\log \, x\, -\, 3)\, (\log \, x\, -\, 2) |$$
  • D. $$\log \left |\displaystyle \frac{\log x\, -\, 3}{\log x\, -\, 2} \right |$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
Let g be continuous function on R such that $$\int g(x)\mathrm{d} x=f(x)+C$$, where C is constant of integration. If f(x) is an odd function, $$f(1)=3$$ and $$\int_{-1}^{1}f^{2}(x)g(x)\mathrm{d} x=\lambda $$, then $$\frac{\lambda }{2}$$ is equal to
  • A. 10
  • B. 11
  • C. 12
  • D. 9

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
If $$I=\displaystyle \int _{ 0 }^{ 1 }{ \frac { dx }{ \left( 1+x \right) \left( 2+x \right) \sqrt { x\left( 1-x \right)  }  }  }$$ then $$I=$$ 
  • A. $$2\pi$$
  • B. $$\pi$$
  • C. $$\dfrac {\pi}{\sqrt {6}}|\sqrt {3}-1|$$
  • D. $$\dfrac {\pi}{2}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Easy
Evaluate:
$$ \int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer