Mathematics

Obtain $$\displaystyle \int_{1}^{e}(x^2 - x)dx$$.


SOLUTION
$$I=\displaystyle \int_1^e(x^2-x)dx$$
   $$=\displaystyle \left [\dfrac{x^3}{3}-\dfrac{x^2}{2}\right]_1^e$$
   $$=\dfrac{e^3}{3}-\dfrac{e^2}{2}+\dfrac{1}{6}$$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 114
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
$$\int { \dfrac { dx }{ \left( x+1 \right) \left( x-2 \right)  } A\log { \left( x+1 \right)  }  } +B\log { \left( x-2 \right)  } +C$$, where
  • A. $$AB=-1$$
  • B. $$A:B=-1$$
  • C. none of these
  • D. $$A+B=0$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\overset {2 x }{ \underset { 0 }{\int  }  }(cos \,\.x)^{2001}dx=........ $$
  • A. $$\pi$$
  • B. $$\dfrac{\p}{2}$$
  • C. none of these
  • D. $$2001$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Solve : $$(x^{2} - 1)\dfrac{dy}{dx} + 2xy = \dfrac{1}{x^{2} - 1}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Evaluate $$\displaystyle \int \dfrac{dx}{\left ( 25-4x^{2} \right )}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
$$\int _{ 0 }^{ 1 }{ \dfrac { { e }^{ x }.x }{ { \left( x+1 \right)  }^{ 2 } } dx= }$$
  • A. $$\dfrac{e}{2}$$
  • B. $$1+\dfrac{e}{2}$$
  • C. $$1-\dfrac{e}{2}$$
  • D. $$\dfrac{e}{2}-1$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer