Mathematics

# Obtain $\displaystyle \int _{ 0 }^{ \pi }{ \sqrt { 1+\cos { 2x } } dx }$

$0$

##### SOLUTION
$\displaystyle\int^{\pi}_0\sqrt{1+\cos^2x}dx$
$\cos 2x=2\cos^2x-1$
$\displaystyle\int^{\pi}_0\sqrt{1+2\cos^2x-1}dx$
$\displaystyle\int^{\pi}_0\sqrt{2}\cos xdx$
$=\sqrt{2}[\sin x]^{\pi}_0$
$=\sqrt{2}[0-0]$
$=0$.

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Hard
$\displaystyle\int^{1}_0\sqrt{x(1-x)}dx=$.
• A. $\dfrac{3\pi}{8}$
• B. $\dfrac{5\pi}{4}$
• C. $\dfrac{\pi}{2}$
• D. $\dfrac{\pi}{8}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\int_{0}^{\pi}|1 + 2\cos x|dx$ is equal to
• A. $\dfrac {2\pi}{3}$
• B. $\pi$
• C. $2$
• D. $\dfrac {\pi}{3} + 2\sqrt {3}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate the definite integral   $\displaystyle \int_0^1\frac {2x+3}{5x^2+1}dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate the given integral.
$\displaystyle\int{\dfrac{dx}{{x}^{\frac{3}{2}}}}$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
The integral of $f(x) = \dfrac{1}{x\ell n x}$ is
• A. $x \ell n x + c$
• B. $\dfrac{x}{\ell n x} + c$
• C. $x + \ell n x +$
• D. $\ell n(\ell n x) + c$