Mathematics

# The value of $\displaystyle \int {\dfrac{{dx}}{{\sin x.\sin \left( {x + \alpha } \right)}}}$ equal to

$\csc\,\,\alpha \,\,\ell n\left| {\dfrac{{\sin x}}{{\sin \left( {x + \alpha } \right)}}} \right| + c$

##### SOLUTION
Given $I= \displaystyle\int \dfrac{1}{sin x. sin(x+\alpha )}dx$

$=\dfrac{1}{sin\alpha } \displaystyle\int \dfrac{sin(x+\alpha -x)}{sin x. sin(x+\alpha )}dx$

$=\dfrac{1}{sin\alpha } \displaystyle\int \dfrac{sin(x+\alpha ).cos x-cos(x+\alpha )sin x}{sin x. sin (x+\alpha )}dx$

$=\dfrac{1}{sin\alpha } \displaystyle\int (cot x- cot (x+\alpha ))dx$

$=\dfrac{1}{sin\alpha }[log|sinx|-log |sin (x+\alpha )|]+c$

$= cosec \, \alpha \, log \left|\dfrac{sin x}{sin (x+\alpha )}\right|+c$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Hard
$\displaystyle \int\frac{\sin^{-1}x-\cos^{-1}x}{\sin^{-1}x+\cos^{-1}x}dx=$
• A. $\log[\sin^{-1}x+\cos^{-1}x]+c$
• B. $\dfrac{4}{\pi}[x\sin^{-1}x+\sqrt{1-x^{2}}]+c$
• C. $\dfrac{4}{\pi}[x\sin^{-1}x-\sqrt{1-x^{2}}]+C$
• D. $\displaystyle \frac{4}{\pi}[x\sin^{-1}x+\sqrt{1-x^{2}}]-x+c$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
Evaluate the following integrals:
$\displaystyle \int { \cfrac { \cos { x } }{ \sqrt { 4+\sin ^{ 2 }{ x } } } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
solve :
$\int { \left( ax+b \right) } ^{ 2 }dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate the following integral
$\int { \cfrac { { e }^{ x }+1 }{ { e }^{ x }+x } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
Evaluate: $\displaystyle \int { \dfrac { \cos { x } -\sin { x } }{ 1+\sin { 2x } } } dx$
• A. $\dfrac{1}{\sin x+\cos x}+C$
• B. $\dfrac{2}{\sin 2x+\cos x}+C$
• C. $-\dfrac{2}{\sin 2x+\cos x}+C$
• D. $-\dfrac{1}{\sin x+\cos x}+C$