Mathematics

$$\lim_\limits{n\to \infty}\left(\frac{(n+1)(n+2)......3n}{2^{2n}}\right)^{\frac{1}{n}}$$ is equal to:


ANSWER

$$\dfrac{27}{e^2}$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
The  value of the integral $$\int\int xy(x+y)dx {\,}dy$$ over the area between $$y=x^2$$ and $$y=x$$ is
  • A. $$\dfrac{47}{56}$$
  • B. $$\dfrac{33}{56}$$
  • C. $$\dfrac{23}{56}$$
  • D. $$\dfrac{3}{56}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
Evaluate : $$ \int \dfrac { sec x}{( sec x + tan x ) } dx $$
  • A. $$ tan x+ sec x+ C $$
  • B. $$ -tan x + sec x + C $$
  • C. $$ -tan x - sec x + C $$
  • D. $$ tan x -sec x + C $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Hard
Evaluate:
$$\int { \sqrt { 4-{ x }^{ 2 } }  } dx\quad $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
Evaluate: $$\displaystyle \int { \dfrac { x\sqrt { x } .dx }{ \sqrt { 1-{ x }^{ 5 } }  } } $$
  • A. $$\dfrac { 2 }{ 5 } x\sin ^{ -1 } ({ x } ^{ \frac { 5 }{ 2 } })+c$$
  • B. $$\dfrac { 1 }{ 5 } x\sin ^{ -1 }({ x } ^{ \frac { 3 }{ 2 } })+c$$
  • C. $$\dfrac { 1 }{ 3 } x\sin ^{ -1 }({ x } ^{ \frac { 3 }{ 2 } })+c$$
  • D. $$\dfrac { -2 }{ 5 }\sin ^{ -1 }(\sqrt{1-{ x }^5 })+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Hard
If $$f(a+b-x)=f(x)$$ then $$\int_{a}^{b}xf\left ( x \right )dx$$ equals
  • A. $$\displaystyle \frac{b-a}{2}\int_{a}^{b}f\left ( x \right )dx$$
  • B. $$\displaystyle \frac{a+b}{2}\int_{a}^{b}f\left ( a+bx \right )dx$$
  • C. $$\displaystyle \frac{a+b}{2}\int_{a}^{b}f\left ( b-x \right )dx$$
  • D. $$\displaystyle \frac{a+b}{2}\int_{a}^{b}f\left ( x \right )dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer