Mathematics

Let  $$\theta$$  be the angle between the lines  $${ L }_{ { 1 } }:\left[ \begin{array}{l} { { x }=2{ t }+{ 1 } } \\ { { y }={ t }+{ 1 } } \\ { { z }=3{ t }+{ 1 } } \end{array} \right. $$  and  $${ L }_{ { 2 } }:\left[ \begin{array}{l} { { x }=3{ s }+2 } \\ { { y }=6{ s }-1 } \\ { { z }=4 } \end{array} \right. $$  where  $$s , t \in  { R }.$$  Then the value of  $$\int _ { 0 } ^ { \theta } \dfrac { 1 } { 1 + \tan x } d x =$$


ANSWER

$$\pi / 6$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
Evaluate $$\displaystyle \int xsecx.tanxdx=$$
  • A. $$x\sec x+\log|\tan(\pi/2+x/2)|+c$$
  • B. $$x\sec x-\log |\tan(\pi/4+x)|+c$$
  • C. $$ x\sec x+\log|\tan x/2|+c$$
  • D. $$x\sec x-\log $$$$|\tan(\pi/4+x/2)|+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Solve :
$$ I = \int \dfrac {e^x}{ e^{2x} - 3e^x + 1 } dx $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
The value of $$\displaystyle \int \tan^{2}\ xdx$$ equals
  • A. $$\tan x-x+c$$
  • B. $$\cot x+x+c$$
  • C. $$-\tan x-x+c$$
  • D. $$\tan x+x+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Evaluate : $$\int {{2^{{2^{{2^x}}}}}{2^{{2^x}}}{2^x}dx.} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Let $$\displaystyle f\left ( x \right )=\frac{\sin 2x \cdot \sin \left ( \dfrac{\pi }{2}\cos x \right )}{2x-\pi }$$

Then answer the following question.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer