Mathematics

Let $$I={\int}_{0}^{1}\dfrac{\sin x}{\sqrt{x}}dx$$ and $$J={\int}_{0}^{1}\dfrac{\cos x}{\sqrt{x}}dx$$. Then, which one of the following is true?


ANSWER

$$I>\dfrac{2}{3}$$ and $$J>2$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Evaluate: 
$$\displaystyle \int \dfrac{x^2\tan^{-1}(x^3)}{1+x^6}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\displaystyle \int x . \cos^{3}{x^{2}} . \sin{x^{2}}dx=$$
  • A. $$\displaystyle \frac{1}{8}\sin^{4}{x^{2}} + c$$
  • B. $$\displaystyle \frac{1}{8}\cos^{4}{x^{2}} + c$$
  • C. $$\displaystyle - \frac{1}{8}\sin^{4}{x^{2}} + c$$
  • D. $$\displaystyle - \frac{1}{8}\cos^{4}{x^{2}} + c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
Evaluate:$$ \displaystyle \int \sqrt{\frac{a-x}{a+x}}dx $$
  • A. $$\displaystyle  \ \sin^{-1} \dfrac{x}{a}+\sqrt{a^{2}-x^{2}}+C $$
  • B. $$\displaystyle \dfrac ax \ \sin^{-1} \dfrac{x}{a}+\sqrt{a^{2}-x^{2}}+C $$
  • C. none of these
  • D. $$\displaystyle a \ \sin^{-1} \dfrac{x}{a}+\sqrt{a^{2}-x^{2}}+C $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium

Solve $$\int {\dfrac{{{x^5}}}{{\sqrt {1 + {x^2}} }}} \,dx$$ 

  • A. $$\dfrac{1}{{15}}\sqrt {1 + {x^2}} \left( {3{x^4} + 4{x^2} + 8} \right) + C$$
  • B. $$\sqrt {1 + {x^2}} \left( {3{x^4} + 4{x^2} + 8} \right) + C$$
  • C. None of these
  • D. $$\dfrac{1}{{15}}\sqrt {1 + {x^2}} \left( {3{x^4} - 4{x^2} + 8} \right) + C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
For the next two (02) items that follow :
Consider the integrals $$I_1=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{dx}{1+\sqrt{tan x}}$$ and $$I_2=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{sin x}dx}{\sqrt{sin }x+\sqrt{cos}x}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer