Mathematics

Let $$I_1=\displaystyle\int^1_0\dfrac{e^xdx}{1+x}$$ and $$I_2=\displaystyle\int^1_0\dfrac{x^2dx}{e^{x^3}(2-x^3)}$$, then $$\dfrac{I_1}{I_2}$$ is?


ANSWER

$$3/e$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
The correct evaluation of $$\displaystyle \int _ { 0 } ^ { \pi / 2 } \sin x \sin 2 x$$ is 
  • A. $$\dfrac { 4 } { 3 }$$
  • B. $$\dfrac { 1 } { 3 }$$
  • C. $$\dfrac { 3 } { 4 }$$
  • D. $$\dfrac { 2 } { 3 }$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\displaystyle \int \sqrt {2x+5}dx$$
  • A. $$\dfrac 1{\sqrt {2x+5}}$$
  • B. $$ \dfrac{3}{5}(2x+5)^{3/5} $$
  • C. $$\dfrac 1{2x+5}$$
  • D. $$\dfrac 13(2x+5)^{3/2}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
$$\displaystyle \int\frac{\log(x+1)-\log x}{x(x+1)}dx=$$
  • A. $$\displaystyle \log(x-1)\log x+\frac{1}{2}(\log(x-1))^{2}-\frac{1}{2}(\log x)^{2}+c$$
  • B. $$\displaystyle \frac{1}{2}(\log(x+1))^{2}+\frac{1}{2}(\log x)^{2}-\log(x+1)\log x+c$$
  • C. $$[(\displaystyle \log(1+\frac{1}{x})]^{2}+c$$
  • D. $$-\displaystyle \frac{1}{2}[\log (1+\displaystyle \frac{1}{x})]^{2}+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Solve $$ \int {r^5} {e^x} dx $$:
(Given $$r$$ is constant)

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 TRUE/FALSE Medium
$$\displaystyle \int_0^{\frac{\pi}{4}} {\cfrac{{{{\cos }^4}x - {{\sin }^4}x}}{{\sqrt {1 + \sin 2x} }}dx} =\sqrt 2$$
  • A. True
  • B. False

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer