Mathematics

Let $${ I }_{ 1 }=\displaystyle \int _{ 0 }^{ 1 }{ { \left( 1-{ x }^{ 50 } \right)  }^{ 100 }dx }$$ and $${ I }_{ 2 }=\displaystyle \int _{ 0 }^{ 1 }{ { \left( 1-{ x }^{ 50 } \right)  }^{ 101 }dx }$$, then $$\dfrac { { I }_{ 1 } }{ { I }_{ 2 } } =$$


ANSWER

$$\dfrac {5051}{5050}$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Evaluate: $$\displaystyle\int { \tan ^{ 3 }{ x }  } dx $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Solve $$\displaystyle\int\limits_b^a {\frac{x}{{\sqrt {{a^2} + {x^2}} }}dx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
If $$\displaystyle\int { \sqrt { 1+\sin { x }  } \cdot f\left( x \right) dx } =\dfrac { 2 }{ 3 } { \left( 1+\sin { x }  \right)  }^{ { 3 }/{ 2 } }+C$$, then $$f\left( x \right) $$ is equal to
  • A. $$\sin { x } $$
  • B. $$\tan { x } $$
  • C. $$1$$
  • D. $$\cos { x } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
The value of integratin $$\displaystyle \int x\sec^{-1}xdx$$ is
  • A. $$\dfrac{1}{2}x^{2}\sec^{-1}x+\displaystyle \frac{1}{2}\sqrt{x^{2}-1}+c$$
  • B. $$x^{2}\sec^{2}x+\displaystyle \frac{1}{2}\sqrt{x^{2}-1}+c$$
  • C. $$x^{2}\sec^{2}x-\dfrac{1}{2}\sqrt{x^{2}-1}+c$$
  • D. $$\displaystyle \frac{1}{2}x^{2}\sec^{-1}x-\frac{1}{2}\sqrt{x^{2}-1}+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Easy
Evaluate:
$$ \int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer