Mathematics

Let $$f(x)=\left\{\begin{matrix} x|x| & , & x\leq -1 \\ [x+1]+[1-x] & , & -1 < x < 1\\ -x|x| & , & x\geq 1\end{matrix}\right.$$ (where $$[\cdot]$$ denotes the greatest integer function) then the value $$\displaystyle\int^{2}_{-2}f(x)dx$$, is equal to?


ANSWER

$$-\dfrac{8}{3}$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
$$\displaystyle \int a^{x}e^{x}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Multiple Correct Hard
The integral $$\displaystyle \int_{0}^{\pi} xf(\sin x)dx $$ is equals to
  • A. $$\displaystyle \frac{\pi}{4}\int_{0}^{\pi} f(\sin x)dx$$
  • B. $$\displaystyle \frac{\pi}{2}\int_{0}^{\pi} f(\sin x)dx$$
  • C. $$\displaystyle \pi \int_{0}^{\pi/2} f(\sin x)dx$$
  • D. $$\displaystyle \pi \int_{0}^{\pi/2} f(\cos x)dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
$$\displaystyle \int \frac{\sin 2x+2\tan x}{\cos ^{6}x+6\cos ^{2}x+4}dx=$$
  • A. $$\displaystyle 2\sqrt{\frac{1+\cos ^{2}x}{\cos ^{7}x}}$$
  • B. $$\displaystyle \tan ^{-1}\frac{1}{\sqrt{2}}\left ( \frac{1+\cos ^{2}x}{\cos ^{7}x} \right )$$
  • C. none
  • D. $$\displaystyle \frac{1}{12}\log \left ( 1+\frac{6}{\cos ^{4}x}+\frac{4}{\cos ^{6}x} \right )$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Evaluate:
$$\displaystyle\int\dfrac{x}{\sqrt{3x^2+4}}dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
Evaluate : $$\displaystyle \int\frac {\sec\sqrt{x}.\tan\sqrt{x}}{\sqrt{x}}dx$$
  • A. $$\sec\sqrt{x}+c$$
  • B. $$ \tan\sqrt{x}+c$$
  • C. $$ \displaystyle \frac{1}{2}\sec\sqrt{x}+c$$
  • D. $$2\sec\sqrt{x}+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer